scholarly journals Non-exhaust particulate matter emission from vehicles: A review

2021 ◽  
Vol 268 ◽  
pp. 01015
Author(s):  
Dongdong Guo ◽  
Hongyuan Wei ◽  
Yong Guo ◽  
Chuanqi Wang ◽  
Zenghui Yin

According to the source, particulate matter produced during vehicle driving can be divided into exhaust emission and non-exhaust emission. Exhaust emission includes exhaust pipe emission and crankcase emission, while non-exhaust emission includes brake wear, tire wear, road wear and road dust. For a long time, it has been considered that the particulate matter pollution of motor vehicles mainly comes from exhaust emissions, and the control of particulate matter pollution in various countries is mainly concentrated in the tail gas. However, with the continuous tightening of emission standards, the emission of particulate matter has been reduced, but also makes the environmental pollution of non-exhaust particulate matter increasingly prominent. This paper summarizes the research on vehicle non-exhaust particulate matter emissions, aiming to emphasize the importance of non-exhaust particulate matter emissions and the necessity of legislation, so as to reduce their contribution to environmental particulate matter concentration.

2012 ◽  
Vol 22 (01n02) ◽  
pp. 165-171 ◽  
Author(s):  
GERELMAA GUNCHIN ◽  
LODOYSAMBA SEREETER ◽  
SHAGJJAMBA DAGVA ◽  
AMARTAIVAN TSENDDAVAA ◽  
PERRY K. DAVY ◽  
...  

Due to increased energy demands from its rapidly growing economy and population, ambient air in Ulaanbaatar, the capital city of Mongolia contains some of the highest reported air particulate matter (APM) concentrations in the world. The purpose of this study is to identify major APM sources. Source apportionment is an elegant and effective way to establish baseline data for mitigation strategies that focus on reducing APM pollution. The Nuclear Research Centre at the National University of Mongolia has been conducting APM pollution studies in Ulaanbaatar since 2004. Results presented here are based on a sampling campaign from June 2008 to May 2009 at two sites in Ulaanbaatar. APM samples were collected on polycarbonate filter, in two size fractions, fine (PM2.5) and coarse (PM10-2.5) particulate matter. Ion beam analysis provided the elemental concentration values and receptor modeling was used to determine the sources contributing to the particulate matter pollution. The results show that the main sources of PM pollution are soil, motor vehicles, coal and wood combustion, with varying contributing amounts at each site. Source contributions to PM2.5 at a residential site were found to be: soil 47%, coal combustion 35%, motor vehicles/road dust 13% and biomass burning 4%. At the residential site it was found that the primary source contributors to PM10-2.5 were soil 71%, coal combustion 10%, and motor vehicles/road dust 19%.Source contributions to PM2.5 at a non-residential site were found to be: coal combustion 92%, motor vehicles/road dust 3%, soil 3% and biomass burning 2%. At the non-residential site it was found that the primary source contributors to PM10-2.5 were: soil 92%, motor vehicle/road dust 5% and coal combustion 3%.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 190
Author(s):  
William Hicks ◽  
Sean Beevers ◽  
Anja H. Tremper ◽  
Gregor Stewart ◽  
Max Priestman ◽  
...  

This research quantifies current sources of non-exhaust particulate matter traffic emissions in London using simultaneous, highly time-resolved, atmospheric particulate matter mass and chemical composition measurements. The measurement campaign ran at Marylebone Road (roadside) and Honor Oak Park (background) urban monitoring sites over a 12-month period between 1 September 2019 and 31 August 2020. The measurement data were used to determine the traffic increment (roadside–background) and covered a range of meteorological conditions, seasons, and driving styles, as well as the influence of the COVID-19 “lockdown” on non-exhaust concentrations. Non-exhaust particulate matter (PM)10 concentrations were calculated using chemical tracer scaling factors for brake wear (barium), tyre wear (zinc), and resuspension (silicon) and as average vehicle fleet non-exhaust emission factors, using a CO2 “dilution approach”. The effect of lockdown, which saw a 32% reduction in traffic volume and a 15% increase in average speed on Marylebone Road, resulted in lower PM10 and PM2.5 traffic increments and brake wear concentrations but similar tyre and resuspension concentrations, confirming that factors that determine non-exhaust emissions are complex. Brake wear was found to be the highest average non-exhaust emission source. In addition, results indicate that non-exhaust emission factors were dependent upon speed and road surface wetness conditions. Further statistical analysis incorporating a wider variability in vehicle mix, speeds, and meteorological conditions, as well as advanced source apportionment of the PM measurement data, were undertaken to enhance our understanding of these important vehicle sources.


Author(s):  
Frank Atzler ◽  
Alfred Wiedensohler ◽  
Tilo Roß ◽  
Kay Weinhold ◽  
Maximilian Dobberkau

AbstractUrban traffic is a significant contributor of particulate matter to the environment (Kessinger et al. in https://www.umweltbundesamt.de/sites/default/files/medien/5750/publikationen/hgp_luftqualitaet_2020_bf.pdf, 2021). Hence, there is a high interest in the measured data of roadside immission measurement station. In the federal state Saxony (Germany), the State Office for Environment, Agriculture and Geology (LfULG) is responsible for supervision of the air pollution. In a joint project, the LfULG, the Leibniz Institute for Tropospheric Research (TROPOS) and the Chair of Combustion Engines and Powertrain Systems of the Technical University of Dresden (Lehrstuhl für Verbrennungsmotoren und Antriebssysteme, LVAS) measured the particulate immission* from a selection of passenger cars in an “environment simulation” Weinhold et al. (https://publikationen.sachsen.de/bdb/artikel/36768q, 2020). Especially direct injection spark ignition engines, DISI, without particle filter have a high particulate matter emission, depending on the operating condition. However, an increase of the particulate matter immission due to the rising market penetration of DISI engines was not measurable at the immission measurement stations of LfULG. To investigate the effect of vehicle exhaust emission and immission, an experiment was developed to measure particulate matter immission similar to road conditions on a chassis dynamometer. Five used cars with different engines, exhaust after treatment systems and mileage were evaluated regarding their emissions and particulate immissions. Unexpectedly, a high amount of ultrafine particulate matter smaller 100 nm was found during the emission measurements, although the exhaust emissions were completely extracted to the CVS measurement system. It was concluded that these particles were assignable to break and tire wear. This paper summarizes the most important findings, the complete report is available in Weinhold et al. (https://publikationen.sachsen.de/bdb/artikel/36768q, 2020).


Author(s):  
Jude A. Osara ◽  
Timothy T. Diller ◽  
Matthew J. Hall ◽  
Ronald D. Matthews ◽  
Jakob Heinrich

Measurements of time-resolved particulate matter emissions from a high-emitting light-duty diesel vehicle were made using an electronic particulate matter sensor developed at the University of Texas. The sensor, which is threaded directly through the exhaust pipe wall, detects the time-resolved mass concentration of carbonaceous PM in undiluted vehicle exhaust. The sensor works by detecting an electrical current that is created between two electrodes that have a large potential difference across them; a current is created when particles are present. The sensor was used to characterize the PM emissions from a Chevrolet Equinox SUV which had its original gasoline engine replaced with a 1.9 liter Fiat/Opel turbo-diesel. The vehicle was without a diesel particulate filter (DPF) and had transient PM emission concentrations during accelerations as high as 1000 g/m3. The sensor’s output closely followed exhaust opacity. PM emissions were found to be highest for rapid accelerations and were strongly correlated with pedal position, which can be taken as a surrogate for the fuel delivery per cycle. The sensor was calibrated against gravimetric filter measurements of dry PM mass captured from the vehicle’s exhaust in sample bags.


Sign in / Sign up

Export Citation Format

Share Document