Influence of Road Paving on Particulate Matter Emission and Fingerprinting of Elements of Road Dust

2018 ◽  
Vol 75 (3) ◽  
pp. 424-435 ◽  
Author(s):  
Anil Kumar ◽  
Suresh Pandian Elumalai
2021 ◽  
Vol 268 ◽  
pp. 01015
Author(s):  
Dongdong Guo ◽  
Hongyuan Wei ◽  
Yong Guo ◽  
Chuanqi Wang ◽  
Zenghui Yin

According to the source, particulate matter produced during vehicle driving can be divided into exhaust emission and non-exhaust emission. Exhaust emission includes exhaust pipe emission and crankcase emission, while non-exhaust emission includes brake wear, tire wear, road wear and road dust. For a long time, it has been considered that the particulate matter pollution of motor vehicles mainly comes from exhaust emissions, and the control of particulate matter pollution in various countries is mainly concentrated in the tail gas. However, with the continuous tightening of emission standards, the emission of particulate matter has been reduced, but also makes the environmental pollution of non-exhaust particulate matter increasingly prominent. This paper summarizes the research on vehicle non-exhaust particulate matter emissions, aiming to emphasize the importance of non-exhaust particulate matter emissions and the necessity of legislation, so as to reduce their contribution to environmental particulate matter concentration.


2019 ◽  
Vol 19 (17) ◽  
pp. 11199-11212 ◽  
Author(s):  
Ana Stojiljkovic ◽  
Mari Kauhaniemi ◽  
Jaakko Kukkonen ◽  
Kaarle Kupiainen ◽  
Ari Karppinen ◽  
...  

Abstract. We have numerically evaluated how effective selected potential measures would be for reducing the impact of road dust on ambient air particulate matter (PM10). The selected measures included a reduction of the use of studded tyres on light-duty vehicles and a reduction of the use of salt or sand for traction control. We have evaluated these measures for a street canyon located in central Helsinki for four years (2007–2009 and 2014). Air quality measurements were conducted in the street canyon for two years, 2009 and 2014. Two road dust emission models, NORTRIP (NOn-exhaust Road TRaffic Induced Particle emissions) and FORE (Forecasting Of Road dust Emissions), were applied in combination with the Operational Street Pollution Model (OSPM), a street canyon dispersion model, to compute the street increments of PM10 (i.e. the fraction of PM10 concentration originating from traffic emissions at the street level) within the street canyon. The predicted concentrations were compared with the air quality measurements. Both road dust emission models reproduced the seasonal variability of the PM10 concentrations fairly well but under-predicted the annual mean values. It was found that the largest reductions of concentrations could potentially be achieved by reducing the fraction of vehicles that use studded tyres. For instance, a 30 % decrease in the number of vehicles using studded tyres would result in an average decrease in the non-exhaust street increment of PM10 from 10 % to 22 %, depending on the model used and the year considered. Modelled contributions of traction sand and salt to the annual mean non-exhaust street increment of PM10 ranged from 4 % to 20 % for the traction sand and from 0.1 % to 4 % for the traction salt. The results presented here can be used to support the development of optimal strategies for reducing high springtime particulate matter concentrations originating from road dust.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 449
Author(s):  
Lili Li ◽  
Kun Wang ◽  
Zhijian Sun ◽  
Weiye Wang ◽  
Qingliang Zhao ◽  
...  

Road dust is one of the primary sources of particulate matter which has implications for air quality, climate and health. With the aim of characterizing the emissions, in this study, a bottom-up approach of county level emission inventory from paved road dust based on field investigation was developed. An inventory of high-resolution paved road dust (PRD) emissions by monthly and spatial allocation at 1 km × 1 km resolution in Harbin in 2016 was compiled using accessible county level, seasonal data and local parameters based on field investigation to increase temporal-spatial resolution. The results demonstrated the total PRD emissions of TSP, PM10, and PM2.5 in Harbin were 270,207 t, 54,597 t, 14,059 t, respectively. The temporal variation trends of pollutant emissions from PRD was consistent with the characteristics of precipitation, with lower emissions in winter and summer, and higher emissions in spring and autumn. The spatial allocation of emissions has a strong association with Harbin’s road network, mainly concentrating in the central urban area compared to the surrounding counties. Through scenario analysis, positive control measures were essential and effective for PRD pollution. The inventory developed in this study reflected the level of fugitive dust on paved road in Harbin, and it could reduce particulate matter pollution with the development of mitigation strategies and could comply with air quality modelling requirements, especially in the frigid region of northeastern China.


Fuel ◽  
2021 ◽  
Vol 301 ◽  
pp. 121054
Author(s):  
Yue Peng ◽  
Tao Wang ◽  
Yongzheng Gu ◽  
Jiawei Wang ◽  
Yongsheng Zhang ◽  
...  

Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122271
Author(s):  
Wu Yang ◽  
Deepak Pudasainee ◽  
Rajender Gupta ◽  
Wei Li ◽  
Ben Wang ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Nattasut Mantananont ◽  
Savitri Garivait ◽  
Suthum Patumsawad

This study is focused on the emission of fixed bed combustor batch operated. Real-time analyser ELPI (electrical low-pressure impactor) system was used to size-segregated particulate matter emission ranging from 40 nm to 10 μm. The results show that total number concentration were3.4×103,1.6×104, and1.5×105 particles/cm3⋅kgfuel, while total mass of particles were 12.2, 8.0, and 6.5 mg/Nm3⋅kgfuelfor combustion of lignite, rice husk and bagasse, respectively. But it can be noticed that cofiring released more particulate matter. Meanwhile it was found that the effect of ratio of over-fired air to total air supply is more pronounced, since decrease in this ratio, the amount of particles are decreased significantly. For particle size distribution, it can be observed that submicron-sized particles dominate and the most prevailing size is in the range: 50 nm<Dp<100 nm, for lignite and agricultural residues. However, during cofiring of fuel mixture at 70% rice husk mass concentration, it is found that there are two major fractions of particle size; 40 nm<Dp<70 nm and 0.2 μm<Dp<0.5 μm. The analysis of particle morphology showed that the isolate shape of submicron particle produced during lignite combustion is characterised by different geometries such as round, capsule, rod, flake-like, whereas the spherical shape is obtained with combustion of rice husk.


Sign in / Sign up

Export Citation Format

Share Document