scholarly journals Life Cycle Energy Analysis and Evaluation of Retreaded Engineering Tires

2021 ◽  
Vol 271 ◽  
pp. 02012
Author(s):  
Wang Qiang ◽  
Jiang Li ◽  
Wang Yunlong ◽  
Wang Guotian ◽  
Zhang peng

In this paper, energy consumption models of retreaded engineering tires were constructed based on life cycle analysis, theoretical calculation model, and energy consumption method during the four stages of retreaded engineering tires, i.e., production, transportation, usage, and recycling stage. The energy substitute model and energy evaluation index during the recycling stage, which involves one of five classical retreaded engineering tire recycling methods, i.e., secondary retreading, mechanical smash, low-temperature smash, combustion decomposition, and combustion power generation, were presented. Life cycle energy analysis of retreaded engineering tires was conducted, and the energy consumption during the different life cycle stages was quantitatively analyzed, thus obtaining the energy restoration rate of the five classical recycling stages of retreaded engineering tires. Energy consumption analysis and energy evaluation at different stages were performed. Main conclusions indicate that the energy consumption during the production stage is the highest, and energy consumption during the transportation stage is the lowest. The energy recycling result of the secondary retreading or combustion decomposition of retreaded engineering tires is obtained.

2004 ◽  
Vol 126 (5) ◽  
pp. 798-804 ◽  
Author(s):  
Peder E. Fitch ◽  
Joyce Smith Cooper

This paper presents a method of performing Life Cycle Energy Analysis (LCEA) for the purpose of material selection. The method applies product analysis methods to the evaluation of material options for automotive components. Specifically, LCEA is used to compare material options for a bumper-reinforcing beam on a 1030 kg vehicle. In this analysis, glass fiber composites and high-strength steel beams result in the lowest life cycle energy consumption. This paper also presents a set of life cycle energy terms designed to clearly distinguish between energy consumption occurring during different phases of a product’s life cycle. In addition, this paper compares the results of the LCEA method to those of other energy analyses and demonstrates how different methods of varying thoroughness can result in different material selections. Finally, opportunities are identified for extending this type of analysis beyond both automotive components and energy consumption. In particular, this paper identifies the need to develop similar methods for other environmental indicators.


2014 ◽  
Vol 6 (4) ◽  
pp. 407-413
Author(s):  
Mantas Kijevičius ◽  
Kęstutis Valančius

The paper analyses the insulation expediency of the external envelopes of the building with reference to 2E (energy – primary energy consumption and environmental – CO2 emissions) criteria and presents an overview of thermal insulation and studies on other structural elements based on life cycle analysis. The object of research is a typical residential building. The article determines different insulation materials of external envelopes, primary energy consumption and CO2 emissions by insulating walls from F to B and from B to A ++ class. Graphical interpretation shows primary energy, CO2 and the payback period of 60 years. Also, the paper considers primary energy and CO2 emissions distributed at various life cycle stages. Straipsnyje nagrinėjamas pastato išorinių atitvarų apšiltinimo tikslingumas 2E (energiniu ­– pirminės energijos sąnaudų ir ekologiniu – CO2 – išmetalų) kriterijų požiūriu. Apžvelgti teoriniai darbai, kuriuose statybinės medžiagos nagrinėjamos pirminės energijos ir poveikio aplinkai vertinimo (PAV) požiūriu. Tyrimo objektu pasirinktas gyvenamosios paskirties pastatas. Nagrinėjamos skirtingos išorinių atitvarų termoizoliacinės medžiagos, nustatomi pirminės energijos kiekiai ir CO2 išmetalai apšiltinant atitvaras nuo F iki B ir nuo B iki A++ pastato energinės klasės. Vertinama pagal gyvavimo ciklo analizės metodiką. Pateikiama grafinė interpretacija, rodanti sutaupytos pirminės energijos ir CO2 kiekius per 60 metų laikotarpį, identifikuojamos energetiškai ir ekologiškai priimtiniausios termoizoliacinės medžiagos pastatams apšiltinti.


2011 ◽  
Vol 287-290 ◽  
pp. 1217-1220
Author(s):  
Ping Gong

The energy consumption of concrete is considered as the research object,and the life cycle theory is applied in the energy consumption analysis of concrete. the life cycle energy consumption inventory analysis of concrete is set up,the concrete’s whole life cycle is divided into four stage. Each stage’s energy consumption is carried out a detailed analysis. Based on the inventory analysis, an energy calculation model of concrete is established .


Author(s):  
Peder E. Fitch ◽  
Joyce Smith Cooper

This paper presents a method of performing Life Cycle Energy Analysis (LCEA) for the purpose of material selection. The method applies product analysis methods to the evaluation of material options for automotive components. Specifically, LCEA is used to compare material options for a bumper-reinforcing beam on a 1030 kg vehicle. From an energy perspective, glass fiber composites and high-strength steel beams performed best. This paper also presents a set of life cycle energy terms designed to clearly distinguish between energy consumption occurring during different phases of a product’s life cycle. In addition, this paper compares the results of the LCEA method to those of other energy analyses and demonstrates how different methods of varying thoroughness can result in different material selections. Finally, opportunities are identified for extending this type of analysis beyond both automotive components and energy consumption.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3287
Author(s):  
Alireza Tabrizikahou ◽  
Piotr Nowotarski

For decades, among other industries, the construction sector has accounted for high energy consumption and emissions. As the energy crisis and climate change have become a growing concern, mitigating energy usage is a significant issue. The operational and end of life phases are all included in the building life cycle stages. Although the operation stage accounts for more energy consumption with higher carbon emissions, the embodied stage occurs in a time-intensive manner. In this paper, an attempt has been made to review the existing methods, aiming to lower the consumption of energy and carbon emission in the construction buildings through optimizing the construction processes, especially with the lean construction approach. First, the energy consumption and emissions for primary construction materials and processes are introduced. It is followed by a review of the structural optimization and lean techniques that seek to improve the construction processes. Then, the influence of these methods on the reduction of energy consumption is discussed. Based on these methods, a general algorithm is proposed with the purpose of improving the construction processes’ performance. It includes structural optimization and lean and life cycle assessments, which are expected to influence the possible reduction of energy consumption and carbon emissions during the execution of construction works.


2000 ◽  
Vol 28 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Roger Fay ◽  
Graham Treloar ◽  
Usha Iyer-Raniga

Sign in / Sign up

Export Citation Format

Share Document