scholarly journals Mitigating the Energy Consumption and the Carbon Emission in the Building Structures by Optimization of the Construction Processes

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3287
Author(s):  
Alireza Tabrizikahou ◽  
Piotr Nowotarski

For decades, among other industries, the construction sector has accounted for high energy consumption and emissions. As the energy crisis and climate change have become a growing concern, mitigating energy usage is a significant issue. The operational and end of life phases are all included in the building life cycle stages. Although the operation stage accounts for more energy consumption with higher carbon emissions, the embodied stage occurs in a time-intensive manner. In this paper, an attempt has been made to review the existing methods, aiming to lower the consumption of energy and carbon emission in the construction buildings through optimizing the construction processes, especially with the lean construction approach. First, the energy consumption and emissions for primary construction materials and processes are introduced. It is followed by a review of the structural optimization and lean techniques that seek to improve the construction processes. Then, the influence of these methods on the reduction of energy consumption is discussed. Based on these methods, a general algorithm is proposed with the purpose of improving the construction processes’ performance. It includes structural optimization and lean and life cycle assessments, which are expected to influence the possible reduction of energy consumption and carbon emissions during the execution of construction works.

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8466
Author(s):  
Ragosebo Kgaugelo Modise ◽  
Khumbulani Mpofu ◽  
Olukorede Tijani Adenuga

The long-term impact of high-energy consumption in the manufacturing sector results in adverse environmental effects. Energy consumption and carbon emission prediction in the production environment is an essential requirement to mitigate climate change. The aim of this paper is to evaluate, model, construct, and validate the electricity generated data errors of an automotive component manufacturing company in South Africa for prediction of future transport manufacturing energy consumption and carbon emissions. The energy consumption and carbon emission data of an automotive component manufacturing company were explored for decision making, using data from 2016 to 2018 for prediction of future transport manufacturing energy consumption. The result is an ARIMA model with regression-correlated error fittings in the generalized least squares estimation of future forecast values for five years. The result is validated with RSS, showing an improvement of 89.61% in AR and 99.1% in MA when combined and an RMSE value of 449.8932 at a confidence level of 95%. This paper proposes a model for efficient prediction of energy consumption and carbon emissions for better decision making and utilize appropriate precautions to improve eco-friendly operation.


Author(s):  
Elvira Rakova ◽  
Jürgen Weber

Today pneumatic drives are widely used to perform various motion tasks. They distinguish themselves through low purchase price and robust design, but show high energy consumption in comparison with electric drives. Existing energy saving measures lead to the reduction of energy consumption, but at the same time they cause the increase of the life cycle costs. All in all, the selection of pneumatic drives has to be done regarding their functionality, efficiency and costs. In this paper the novel Exonomy approach is presented for the selection of the most cost-effective pneumatic drive solution. Developed analysis enables 3 steps. First step includes the new approach for the sizing of pneumatic cylinders based on exergy-energy balance. The term Sizing Factor (SF) is introduced to perform the grade of over sizing of the actuator due to the loss occurred in the system. The second step provides the information about energy consumption. The last step enables the information about life cycle costs of the system and gains the data about amortization time based on Life Cycle Costs (LCC). In the current study all steps of Exonomy analysis has been applied to the vertical as well as to the horizontal pneumatic drives. This study has identified SF for various loading mass and velocities, typical for handling machines. The simulation models were validated with the help of the measurement results. Summarizing, a new formula is proposed to choose the design parameters of the drive. And finally, the quid-line is presented to choose the most cost-effective drive solution.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


2021 ◽  
Vol 13 (3) ◽  
pp. 1339
Author(s):  
Ziyuan Chai ◽  
Zibibula Simayi ◽  
Zhihan Yang ◽  
Shengtian Yang

In order to achieve the carbon emission reduction targets in Xinjiang, it has become a necessary condition to study the carbon emission of households in small and medium-sized cities in Xinjiang. This paper studies the direct carbon emissions of households (DCEH) in the Ebinur Lake Basin, and based on the extended STIRPAT model, using the 1987–2017 annual time series data of the Ebinur Lake Basin in Xinjiang to analyze the driving factors. The results indicate that DCEH in the Ebinur Lake Basin during the 31 years from 1987 to 2017 has generally increased and the energy structure of DCEH has undergone tremendous changes. The proportion of coal continues to decline, while the proportion of natural gas, gasoline and diesel is growing rapidly. The main positive driving factors affecting its carbon emissions are urbanization, vehicle ownership and GDP per capita, while the secondary driving factor is residents’ year-end savings. Population, carbon intensity and energy consumption structure have negative effects on carbon emissions, of which energy consumption structure is the main factor. In addition, there is an environmental Kuznets curve between DCEH and economic development, but it has not yet reached the inflection point.


2015 ◽  
Vol 1092-1093 ◽  
pp. 1597-1600
Author(s):  
Zhong Hua Wang ◽  
Xin Ye Chen

The need to reduce carbon emission in Heilongjiang Province of China is urgent challenge facing sustainable development. This paper aims to make explicit the problem-solving of carbon emission to find low carbon emission ways. According to domestic and foreign literatures on estimating and calculating carbon emissions and by integrating calculation methods of carbon emissions, it was not possible to consider all of the many contributions to carbon emissions. Calculation model of carbon emissions suitable to this paper is selected. The carbon emissions of energy consumption in mining industry are estimated and calculated from 2005 to 2012, and the characteristics of carbon emission are analyzed at the provincial level. It makes the point that carbon emissions of energy consumption in mining industry can be reduced when we attempt to alter energy consumption structure, adjust industrial structure and improve energy utilization efficiency.


2013 ◽  
Vol 869-870 ◽  
pp. 746-749
Author(s):  
Tian Tian Jin ◽  
Jin Suo Zhang

Abstract. Based on ARDL model, this paper discussed the relationship of energy consumption, carbon emission and economic growth.The results indicated that the key to reduce carbon emissions lies in reducing energy consumption, optimizing energy structure.


2021 ◽  
Vol 245 ◽  
pp. 01020
Author(s):  
Aixia Xu ◽  
Xiaoyong Yang

The input-output method is employed in this study to measure the total carbon emission of the logistics industry in Guangdong. The findings revealed that the carbon emission of direct energy consumption of the logistics industry in Guangdong is far above the actual carbon emissions, the second and third industries play a significant role in carbon emission of indirect energy consumption in the logistics industry in Guangdong. To reduce energy consumption and carbon emissions in Guangdong, it is not only important to control the carbon emissions in the logistics industry, but strengthen carbon emission detection in relevant industries, improve the energy utilization rate and reduce emissions in other industries, and move towards low-carbon sustainable development.


2016 ◽  
Vol 5 (6) ◽  
pp. 38-47
Author(s):  
Мануйлова ◽  
Natalia Manuylova ◽  
Булычев ◽  
Sergey Bulychev ◽  
Горбачев ◽  
...  

Problems related to a comprehensive assessment of construction materials’ environmental safety, taking into account stages of products’ complete life cycle have been considered. Approaches to determination of material’s safety and environmental record as environmental characteristics of the material, regardless of its use in a specific product, and without regard to processing technology have been described. It has been proposed to consider material’s safety and environmental record as the sum of three environmental safety factors for material’s life cycle stages: production of raw material and its potential environmental hazard; processing of raw material in the material; proper material from the standpoint of its environmental safety and effects on the human body. This criterion application allows compare the environmental properties both of cognate materials and dissimilar ones.


2013 ◽  
Vol 838-841 ◽  
pp. 2818-2822
Author(s):  
Su Xian Zhang ◽  
Xian Wei Tang

With the highly praised development of low-carbon and implementation of western development strategy, the various industries of northwest faced great stress with how to weigh the economic growth and reduce carbon emissions. In this study, based on the data about energy consumption and GDP in the construction industry of five northwestern provinces, and estimates the carbon emissions of construction indirectly. Then combined withDecoupling Theoryanalysis the interacted impact among carbon emissions, energy consumption and economic growth in the construction industry of five northwestern provinces .The results shows that the development of construction industry in provinces is still based on high energy consumption and high carbon emissions, but each impact degree of them are different. Finally, put some suggest improvements to reduce the energy consumption and carbon emissions in the construction industry path of five northwestern provinces.


Sign in / Sign up

Export Citation Format

Share Document