scholarly journals An Innovative Smart Grid Framework for Integration and Trading

2021 ◽  
Vol 294 ◽  
pp. 02007
Author(s):  
Fabio Silva ◽  
Brian O’Regan

Smart Grids (SGs) are at the forefront of the renewable resources transformative change for power generation. Due to its decentralised energy generation approach and potential reduction of the cost of power, its relevance for the energy sector is insurmountable. However, new business models and processes are necessary, and they come with integration, implementation, and operation-specific challenges. This work offers a broad analysis of SG’ main architectural aspects concerning security issues, integration bottlenecks and standardisation shortcomings in the development of an efficient platform for local energy (generation and storage) surplus trading. Through a multi-layered smart grid architecture description, this work develops an in-depth depiction of the interoperability between these layers (from top business layer passing through information and communications layers, and down to generation and storage layers). Therefore, this paper encompasses a comprehensive framework to address central smart grids design aspects and suggests a path to integrate the smart grid components into a cohesive and manageable trading platform. Finally, this work demonstrates how the proposed framework can be applied to real market study cases to highlight its solutions, provide a critical evaluation of potential implementation pitfalls, and identify opportunities for further stateof-the-art research.

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2140 ◽  
Author(s):  
Sofana Reka. S ◽  
Tomislav Dragičević ◽  
Pierluigi Siano ◽  
S.R. Sahaya Prabaharan

Wireless cellular networks are emerging to take a strong stand in attempts to achieve pervasive large scale obtainment, communication, and processing with the evolution of the fifth generation (5G) network. Both the present day cellular technologies and the evolving new age 5G are considered to be advantageous for the smart grid. The 5G networks exhibit relevant services for critical and timely applications for greater aspects in the smart grid. In the present day electricity markets, 5G provides new business models to the energy providers and improves the way the utility communicates with the grid systems. In this work, a complete analysis and a review of the 5G network and its vision regarding the smart grid is exhibited. The work discusses the present day wireless technologies, and the architectural changes for the past years are shown. Furthermore, to understand the user-based analyses in a smart grid, a detailed analysis of 5G architecture with the grid perspectives is exhibited. The current status of 5G networks in a smart grid with a different analysis for energy efficiency is vividly explained in this work. Furthermore, focus is emphasized on future reliable smart grid communication with future roadmaps and challenges to be faced. The complete work gives an in-depth understanding of 5G networks as they pertain to future smart grids as a comprehensive analysis.


Author(s):  
Vivekanadam B

Use of automation and intelligence in smart grids has led to implementation in a number of applications. When internet of things is incorporated it will result in the significant improvement a number of factors such as fault recovery, energy delivery efficiency, demand response and reliability. However, the collaboration of internet of things and smart grid gives rise to a number of security issues and threats. This is especially the case when using internet based protocols and public communication infrastructure. To address these issues we should ensure that the data stored is secure and critical information from the data is extracted in a careful manner. If any threat to its security is detective an early blackout warning should be issued immediately. In this paper we have proposed a geometric view point for big data attacks which is capable of bypassing bad data detection. We have created an environment where replay scheme is used launch blind energy big data attack. The defence mechanism of our proposed work is studied and found to be efficient. Experimental evidence supports our theory and we have found our methodology to efficiently improve error detection rate.


2022 ◽  
pp. 368-379
Author(s):  
Kimmi Kumari ◽  
M. Mrunalini

The highly interconnected network of heterogeneous devices which enables all kinds of communications to take place in an efficient manner is referred to as “IOT.” In the current situation, the data are increasing day by day in size as well as in terms of complexities. These are the big data which are in huge demand in the industrial sectors. Various IT sectors are adopting big data present on IOT for the growth of their companies and fulfilling their requirements. But organizations are facing a lot of security issues and challenges while protecting their confidential data. IOT type systems require security while communications which is required currently by configuration levels of security algorithms, but these algorithms give more priority to functionalities of the applications over security. Smart grids have become one of the major subjects of discussions when the demands for IOT devices increases. The requirements arise related to the generation and transmission of electricity, consumption of electricity being monitored, etc. The system which is responsible to collect heterogeneous data are a complicated structure and some of its major subsystems which they require for smooth communications include log servers, smart meters, appliances which are intelligent, different sensors chosen based on their requirements, actuators with proper and efficient infrastructure. Security measures like collection, storage, manipulations and a massive amount of data retention are required as the system is highly diverse in its architecture and even the heterogeneous IOT devices are interacting with each other. In this article, security challenges and concerns of IOT big data associated with smart grid are discussed along with the new security enhancements for identification and authentications of things in IOT big data environments.


Author(s):  
Janavi Popat ◽  
Harsh Kakadiya ◽  
Lalit Tak ◽  
Neeraj Kumar Singh ◽  
Mahshooq Abdul Majeed ◽  
...  

Smart grid has changed power systems and their reliability concerns. Along with that, cyber security issues are also introduced due to the use of intelligent electronic devices (IEDs), wireless sensory network (WSN), and internet of things (IoT) for two-way communication. This chapter presents a review of different methods used from 2010 to 2020 focusing on citation as the main criteria for reliability assessment of smart grids and proposals to improve reliability when it comes to assessing a practical transmission system. It shows that evolutionary techniques are the latest trend for smart grid security.


Author(s):  
A. J. Sguarezi Filho ◽  
Ivan R. S. Casella ◽  
C. E. Capovilla ◽  
E. Ruppert

Smart grids comprise advanced communication infrastructure to provide balance supply, demand, and storage of energy over a region in a much more efficient manner than it is done today. However, in a smart grid, the utilization of wireless technologies for transmitting control information requires a powerful error protection to avoid any serious problems to the energétic plant. With this focus, the work is concerned with a wireless coding deadbeat power control system for a variable speed wind doubly-fed induction generator for smart grid applications.


Author(s):  
Yaodong Yang ◽  
Jianye Hao ◽  
Yan Zheng ◽  
Chao Yu

Smart grids are contributing to the demand-side management by integrating electronic equipment, distributed energy generation and storage and advanced meters and controllers. With the increasing adoption of electric vehicles and distributed energy generation and storage systems, residential energy management is drawing more and more attention, which is regarded as being critical to demand-supply balancing and peak load reduction. In this paper, we focus on a microgrid scenario in which modern homes interact together under a large-scale setting to better optimize their electricity cost. We first make households form a group with an economic stimulus. Then we formulate the energy expense optimization problem of the household community as a multi-agent coordination problem and present an Entropy-Based Collective Multiagent Deep Reinforcement Learning (EB-C-MADRL) framework to address it. Experiments with various real-world data demonstrate that EB-C-MADRL can reduce both the long-term group power consumption cost and daily peak demand effectively compared with existing approaches.


2013 ◽  
Vol 61 (10) ◽  
pp. 2454-2472 ◽  
Author(s):  
Italo Atzeni ◽  
Luis G. Ordonez ◽  
Gesualdo Scutari ◽  
Daniel P. Palomar ◽  
Javier R. Fonollosa

Author(s):  
Gurbakshish Singh Toor ◽  
Maode Ma

The evolution of the traditional electricity infrastructure into smart grids promises more reliable and efficient power management, more energy aware consumers and inclusion of renewable sources for power generation. These fruitful promises are attracting initiatives by various nations all over the globe in various fields of academia. However, this evolution relies on the advances in the information technologies and communication technologies and thus is inevitably prone to various risks and threats. This work focuses on the security aspects of HAN and NAN subsystems of smart grids. The chapter presents some of the prominent attacks specific to these subsystems, which violate the specific security goals requisite for their reliable operation. The proposed solutions and countermeasures for these security issues presented in the recent literature have been reviewed to identify the promising solutions with respect to the specific security goals. The paper is concluded by presenting some of the challenges that still need to be addressed.


Sign in / Sign up

Export Citation Format

Share Document