Security Issues of Communication Networks in Smart Grid

Author(s):  
Gurbakshish Singh Toor ◽  
Maode Ma

The evolution of the traditional electricity infrastructure into smart grids promises more reliable and efficient power management, more energy aware consumers and inclusion of renewable sources for power generation. These fruitful promises are attracting initiatives by various nations all over the globe in various fields of academia. However, this evolution relies on the advances in the information technologies and communication technologies and thus is inevitably prone to various risks and threats. This work focuses on the security aspects of HAN and NAN subsystems of smart grids. The chapter presents some of the prominent attacks specific to these subsystems, which violate the specific security goals requisite for their reliable operation. The proposed solutions and countermeasures for these security issues presented in the recent literature have been reviewed to identify the promising solutions with respect to the specific security goals. The paper is concluded by presenting some of the challenges that still need to be addressed.

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1043
Author(s):  
Abdallah A. Smadi ◽  
Babatunde Tobi Ajao ◽  
Brian K. Johnson ◽  
Hangtian Lei ◽  
Yacine Chakhchoukh ◽  
...  

The integration of improved control techniques with advanced information technologies enables the rapid development of smart grids. The necessity of having an efficient, reliable, and flexible communication infrastructure is achieved by enabling real-time data exchange between numerous intelligent and traditional electrical grid elements. The performance and efficiency of the power grid are enhanced with the incorporation of communication networks, intelligent automation, advanced sensors, and information technologies. Although smart grid technologies bring about valuable economic, social, and environmental benefits, testing the combination of heterogeneous and co-existing Cyber-Physical-Smart Grids (CP-SGs) with conventional technologies presents many challenges. The examination for both hardware and software components of the Smart Grid (SG) system is essential prior to the deployment in real-time systems. This can take place by developing a prototype to mimic the real operational circumstances with adequate configurations and precision. Therefore, it is essential to summarize state-of-the-art technologies of industrial control system testbeds and evaluate new technologies and vulnerabilities with the motivation of stimulating discoveries and designs. In this paper, a comprehensive review of the advancement of CP-SGs with their corresponding testbeds including diverse testing paradigms has been performed. In particular, we broadly discuss CP-SG testbed architectures along with the associated functions and main vulnerabilities. The testbed requirements, constraints, and applications are also discussed. Finally, the trends and future research directions are highlighted and specified.


Author(s):  
Adnan Rashid ◽  
Osman Hasan

Smart grids provide a digital upgradation of the conventional power grids by alleviating the power outages and voltage sags that occur due to their inefficient communication technologies and systems. They mainly tend to strengthen the efficiency, performance, and reliability of the traditional grids by establishing a trusted communication link between their different components through routing protocols. The conventional methods, i.e., the computer-based simulations and net testing, for analyzing these routing network protocols are error-prone and thus cannot be relied upon while analyzing the safety-critical smart grid systems. Formal methods can cater for the above-mentioned inaccuracies and thus can be very beneficial in analyzing communication protocols used in smart grids. In order to demonstrate the utilization and effectiveness of formal methods in analyzing smart grid routing protocols, we use the UPPAAL model checker to formally model the ZigBee-based routing protocol. We also verify some of its properties, such as, liveness, collision avoidance and deadlock freeness.


Author(s):  
Yona Lopes ◽  
Natalia Castro Fernandes ◽  
Tiago Bornia de Castro ◽  
Vitor dos Santos Farias ◽  
Julia Drummond Noce ◽  
...  

Advances in smart grids and in communication networks allow the development of an interconnected system where information arising from different sources helps building a more reliable electrical network. Nevertheless, this interconnected system also brings new security threats. In the past, communication networks for electrical systems were restrained to closed and secure areas, which guaranteed network physical security. Due to the integration with smart meters, clouds, and other information sources, physical security to network access is no longer available, which may compromise the electrical system. Besides smart grids bring a huge growth in data volume, which must be managed. In order to achieve a successful smart grid deployment, robust network communication to provide automation among devices is necessary. Therefore, outages caused by passive or active attacks become a real threat. This chapter describes the main architecture flaws that make the system vulnerable to attacks for creating energy disruptions, stealing energy, and breaking privacy.


Author(s):  
Dongming Fan ◽  
Yi Ren ◽  
Qiang Feng

The smart grid is a new paradigm that enables highly efficient energy production, transport, and consumption along the whole chain from the source to the user. The smart grid is the combination of classical power grid with emerging communication and information technologies. IoT-based smart grid will be one of the largest instantiations of the IoT in the future. The effectiveness of IoT-based smart grid is mainly reflected in observability, real-time analysis, decision-making, and self-healing. A proper effectiveness modeling approach should maintain the reliability and maintainability of IoT-based smart grids. In this chapter, a multi-agent-based approach is proposed to model the architecture of IoT-based smart grids. Based on the agent framework, certain common types of agents are provided to describe the operation and restoration process of smart grids. A case study is demonstrated to model an IoT-based smart grid with restoration, and the interactive process with agents is proposed simultaneously.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 567 ◽  
Author(s):  
Chatura Seneviratne ◽  
Patikiri Arachchige Don Shehan Nilmantha Wijesekara ◽  
Henry Leung

Internet of Things (IoT) can significantly enhance various aspects of today’s electric power grid infrastructures for making reliable, efficient, and safe next-generation Smart Grids (SGs). However, harsh and complex power grid infrastructures and environments reduce the accuracy of the information propagating through IoT platforms. In particularly, information is corrupted due to the measurement errors, quantization errors, and transmission errors. This leads to major system failures and instabilities in power grids. Redundant information measurements and retransmissions are traditionally used to eliminate the errors in noisy communication networks. However, these techniques consume excessive resources such as energy and channel capacity and increase network latency. Therefore, we propose a novel statistical information fusion method not only for structural chain and tree-based sensor networks, but also for unstructured bidirectional graph noisy wireless sensor networks in SG environments. We evaluate the accuracy, energy savings, fusion complexity, and latency of the proposed method by comparing the said parameters with several distributed estimation algorithms using extensive simulations proposing it for several SG applications. Results prove that the overall performance of the proposed method outperforms other fusion techniques for all considered networks. Under Smart Grid communication environments, the proposed method guarantees for best performance in all fusion accuracy, complexity and energy consumption. Analytical upper bounds for the variance of the final aggregated value at the sink node for structured networks are also derived by considering all major errors.


Cryptography ◽  
2020 ◽  
pp. 257-276
Author(s):  
Melesio Calderón Muñoz ◽  
Melody Moh

The electrical power grid forms the functional foundation of our modern societies, but in the near future our aging electrical infrastructure will not be able to keep pace with our demands. As a result, nations worldwide have started to convert their power grids into smart grids that will have improved communication and control systems. A smart grid will be better able to incorporate new forms of energy generation as well as be self-healing and more reliable. This paper investigates a threat to wireless communication networks from a fully realized quantum computer, and provides a means to avoid this problem in smart grid domains. We discuss and compare the security aspects, the complexities and the performance of authentication using public-key cryptography and using Merkel trees. As a result, we argue for the use of Merkle trees as opposed to public key encryption for authentication of devices in wireless mesh networks (WMN) used in smart grid applications.


Author(s):  
Vivekanadam B

Use of automation and intelligence in smart grids has led to implementation in a number of applications. When internet of things is incorporated it will result in the significant improvement a number of factors such as fault recovery, energy delivery efficiency, demand response and reliability. However, the collaboration of internet of things and smart grid gives rise to a number of security issues and threats. This is especially the case when using internet based protocols and public communication infrastructure. To address these issues we should ensure that the data stored is secure and critical information from the data is extracted in a careful manner. If any threat to its security is detective an early blackout warning should be issued immediately. In this paper we have proposed a geometric view point for big data attacks which is capable of bypassing bad data detection. We have created an environment where replay scheme is used launch blind energy big data attack. The defence mechanism of our proposed work is studied and found to be efficient. Experimental evidence supports our theory and we have found our methodology to efficiently improve error detection rate.


Author(s):  
Abdullah Al-Mamun Bulbul ◽  
Rayhan Habib Jibon ◽  
Hasibur Rahman ◽  
Sandipa Biswas ◽  
Md. Bellal Hossain ◽  
...  

Abstract:: Modern life aims at transforming the world less vulnerable to risk, shortening our workload, saving time, assuring security, and overall making our life more comfortable. These goals may be achieved through the implementation of smart environments that are formed with different sensors employed in the collection of various environmental data. The collaboration of these type of sensors is known as wireless sensor networks (WSN) that enhances the power generation system and serve smartly. A wide range of studies suggests that WSN is an auspicious nomenclature that possesses the capability of turning the traditional way of electric power generation, distribution, utilization monitoring and measurement, fault tolerance, etc. into a smart one. However, the application of WSN in the smart grid is not a feasible task. Several challenges have to be overcome to introduce WSN effectively in the smart grid. This review begins with an in-depth discussion on the migration from the conventional power grid to a smart grid (SG). Then how the introduction of WSN in SG benefits the conventional-SG is discussed followed by the comparative analysis of the security demands, MAC layer protocols, and routing protocols of WSN-based-SG. Finally, the communication technologies, future motives, and intact fields of WSN-based-SG have been discussed in this review.


2020 ◽  
Vol 3 (3) ◽  
pp. 78-91
Author(s):  
Mohamed Koroma ◽  
Ibrahim Abdulai Sawaneh

This paper presents a detailed survey of global energy delivery and smart grid approaches. Particularly in the sense that shows the impacts on the production of energy resources globally. How can energy losses be reduced, primarily by implementing smart grid approaches? Power transfers and reduction of energy sources can be made by smart grids with information technology (I.T) such as sensors digital meters and communication networks.  Energy from photovoltaic and wind power are some of the energy delivery systems that have gained attention since they are cheap and environment-friendly and do not emit greenhouse gas. Presently available grid is insufficient to serve future systems. For this reason, an intelligent grid system is required to support future needs for society. This paper expounds on the impacts of the existing power delivery system and suggests a smart grid for global energy delivery on a better management system.


2022 ◽  
pp. 368-379
Author(s):  
Kimmi Kumari ◽  
M. Mrunalini

The highly interconnected network of heterogeneous devices which enables all kinds of communications to take place in an efficient manner is referred to as “IOT.” In the current situation, the data are increasing day by day in size as well as in terms of complexities. These are the big data which are in huge demand in the industrial sectors. Various IT sectors are adopting big data present on IOT for the growth of their companies and fulfilling their requirements. But organizations are facing a lot of security issues and challenges while protecting their confidential data. IOT type systems require security while communications which is required currently by configuration levels of security algorithms, but these algorithms give more priority to functionalities of the applications over security. Smart grids have become one of the major subjects of discussions when the demands for IOT devices increases. The requirements arise related to the generation and transmission of electricity, consumption of electricity being monitored, etc. The system which is responsible to collect heterogeneous data are a complicated structure and some of its major subsystems which they require for smooth communications include log servers, smart meters, appliances which are intelligent, different sensors chosen based on their requirements, actuators with proper and efficient infrastructure. Security measures like collection, storage, manipulations and a massive amount of data retention are required as the system is highly diverse in its architecture and even the heterogeneous IOT devices are interacting with each other. In this article, security challenges and concerns of IOT big data associated with smart grid are discussed along with the new security enhancements for identification and authentications of things in IOT big data environments.


Sign in / Sign up

Export Citation Format

Share Document