Analysis of current density and electric field beneath a bipolar DC wires-to-plane corona discharge in humid air

2013 ◽  
Vol 61 (3) ◽  
pp. 30803 ◽  
Author(s):  
Massinissa Aissou ◽  
Hakim Aitsaid ◽  
Hamou Nouri ◽  
Youcef Zebboudj
Author(s):  
Hoyeon Choi ◽  
Yong Gap Park ◽  
Man Yeong Ha

Abstract In this paper, a numerical model was developed to describe the wire-plate electrostatic precipitator, commonly called electronic air cleaners. Electrostatic precipitator have been widely used to control particulate pollutants, which adversely affect human health. In this model, the complex interactions between fluid dynamics, electric fields and particle dynamics are considered. Therefore different approach methods are used in this study for each field, Eulerian reference frame was used for the fluid flow field and the electric field, Lagrangian reference frame used for the particles trajectories. In order to describe corona phenomena around high voltage electrode, electric field and ion current density field in electrostatic precipitator are numerically calculated using the iterative method for corona discharge model suggested by Kim (2010). The most important concept in electrostatic precipitator is the electric force applied to particles through the particle charging phenomena. The charge acquired by the particle in the corona region was obtained by combining the field charge, the diffusion charge and the time available for charging being the residence time of the particle in the corona region. In order to simulate more accurately, the charging model suggested by Lawless (1996) is used for the charging phenomena of particles by corona discharge because this model was designed to predict combination effect of diffusion charge and field charge. The diminution of particle concentration along the collection plate was derived from Deutsch’s theory, and migration velocity of the particle was developed from the condition that the magnitude of Coulomb force is equal to that of Stoke’s resistance force. This model is implemented by UDF in commercial software Fluent and validated with experimental and numerical results from literatures. CFD results had been compared with various experimental data obtained by Penney&Matick, Parasram and Kihm. Our results shows good agreement in terms of distributions of electric potential, current density, electrohydrodynamic flow pattern, and particle trajectories as well as corona current and collection efficiency. From this simulation, the effect of wire arrangement on electrostatic precipitator characteristics and particle charging are investigated. Both inline and staggered arrangements of wire electrode have been considered for fixed values of gas velocity equal to 2m/s. Applied voltage on wire electrode varies 6∼13kV and particle diameter is 4μm. For low voltage condition, staggered arrangement of wire electrode caused the turbulent effect so that collection efficiency increase more than inline arrangement. However, collection efficiency decrease in high voltage condition because electric force applied on particles passing between the wire electrodes is canceled out by both side wire electrodes.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1157
Author(s):  
Yong Liu ◽  
Xingwang Huang

Ceramic outdoor insulators play an important role in electrical insulation and mechanical support because of good chemical and thermal stability, which have been widely used in power systems. However, the brittleness and surface discharge of ceramic material greatly limit the application of ceramic insulators. From the perspective of sintering technology, flash sintering technology is used to improve the performance of ceramic insulators. In this paper, the simulation model of producing the ceramic insulator by the flash sintering technology was set up. Material Studio was used to study the influence of electric field intensity and temperature on the alumina unit cell. COMSOL was used to study the influence of electric field intensity and current density on sintering speed, density and grain size. Obtained results showed that under high temperature and high voltage, the volume of the unit cell becomes smaller and the atoms are arranged more closely. The increase of current density can result in higher ceramic density and larger grain size. With the electric field intensity increasing, incubation time shows a decreasing tendency and energy consumption is reduced. Ceramic insulators with a higher uniform structure and a smaller grain size can show better dielectric performance and higher flashover voltage.


2018 ◽  
Vol 7 (3.36) ◽  
pp. 127 ◽  
Author(s):  
Nishanthi Sunthrasakaran ◽  
Nor Akmal Mohd Jamail ◽  
Qamarul Ezani Kamarudin ◽  
Sujeetha Gunabalan

The most important aspect influencing the circumstance and characteristics of electrical discharges is the distribution of electric field in the gap of electrodes. The study of discharge performance requires details on the variation of maximum electric field around the electrode. In electrical power system, the insulation of high voltage power system usually subjected with high electric field. The high electric field causes the degradation performance of insulation and electrical breakdown start to occur. Generally, the standard sphere gaps widely used for protective device in electrical power equipment. This project is study about the electric field distribution and current density for different electrode configuration with XLPE barrier. Hence, the different electrode configuration influences the electric field distribution. This project mainly involves the simulation in order to evaluate the maximum electric field for different electrode configuration. Finite Element Method (FEM) software has been used in this project to perform the simulation. This project also discusses the breakdown characteristics of the XLPE. The accurate evaluation of electric field distribution and maximum electric field is an essential for the determination of discharge behavior of high voltage apparatus and components. The degree of uniformity is very low for pointed rod-plane when compared to other two electrode configurations. The non- uniform electric distribution creates electrical stress within the surface of dielectric barrier. As a conclusion, when the gap distance between the electrodes increase the electric field decrease.  


Author(s):  
Yingxia Wei ◽  
Yaoxiang Liu ◽  
Tie-Jun Wang ◽  
Na Chen ◽  
Jingjing Ju ◽  
...  

We report on a systematic experimental study on the fluorescence spectra produced from a femtosecond laser filament in air under a high electric field. The electric field alone was strong enough to create corona discharge (CD). Fluorescence spectra from neutral and ionic air molecules were measured and compared with pure high-voltage CD and pure laser filamentation (FIL). Among them, high electric field assisted laser FIL produced nitrogen fluorescence more efficiently than either pure CD or pure FIL processes. The nonlinear enhancement of fluorescence from the interaction of the laser filament and corona discharging electric field resulted in a more efficient ionization along the laser filament zone, which was confirmed by the spectroscopic measurement of both ionization-induced fluorescence and plasma-scattered 800 nm laser pulses. This is believed to be the key precursor process for filament-guided discharge.


Sign in / Sign up

Export Citation Format

Share Document