Thermal performance comparison of different sun tracking configurations

2019 ◽  
Vol 88 (2) ◽  
pp. 20902
Author(s):  
O. Achkari ◽  
A. El Fadar

Parabolic trough collector (PTC) is one of the most widespread solar concentration technologies and represents the biggest share of the CSP market; it is currently used in various applications, such as electricity generation, heat production for industrial processes, water desalination in arid regions and industrial cooling. The current paper provides a synopsis of the commonly used sun trackers and investigates the impact of various sun tracking modes on thermal performance of a parabolic trough collector. Two sun-tracking configurations, full automatic and semi-automatic, and a stationary one have numerically been investigated. The simulation results have shown that, under the system conditions (design, operating and weather), the PTC's performance depends strongly on the kind of sun tracking technique and on how this technique is exploited. Furthermore, the current study has proven that there are some optimal semi-automatic configurations that are more efficient than one-axis sun tracking systems. The comparison of the mathematical model used in this paper with the thermal profile of some experimental data available in the literature has shown a good agreement with a remarkably low relative error (2.93%).

2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Nur Akmal Jailani ◽  
Arshad Ahmad ◽  
Norafneeza Norazahar

Malaysia receives an annual average of 2200 hours of solar radiation, making her abundant renewable resources to generate electricity. Thus, a good planning is required to manage the resources efficiently and to utilize the abundant resources fully. Concentrating solar power (CSP) technology is a possible approach to manage renewable resources in Malaysia. Using a techno-economic analysis, the researchers, engineers, industries, or government agencies will be able to identify contributing and discouraging factors of building the CSP technology. This paper presents a techno-economic analysis of two CSP technology: parabolic trough collector (PTC) and solar power tower (SPT), for potential implementation in Malaysia. This paper provides information on two CSP technologies to researchers and industries prior to the planning and design stages. The techno-economic analysis begins with identifying potential locations based on the direct normal irradiation (DNI). Kuah, Kuantan, Miri and Labuan are identified as the potential locations using the RETScreen Expert software. Labuan could be the most promising PTC and SPT technology project because it has the highest DNI received annually. Next, the techno-economic analysis uses two reference projects, ANDASOL-1 and PS-10 systems in Spain, as references for all locations. The techno-economic analysis consists of annual electricity generation, unit cost of electricity, net Present Value (NPV), benefit-to-cost ratio (B/C), internal rate of return (IRR), and payback period calculated in Microsoft Excel. Finally, a sensitivity analysis is conducted to measure the impact of uncertainties of one or more input variables, leading to uncertainties on the output variables. Two sensitive factors are the annual electricity generation and the initial cost, affecting the construction, installation, and implementation of PTC or SPT technology.


2017 ◽  
Vol 8 (1) ◽  
pp. 45-50 ◽  
Author(s):  
S. Pavlovic ◽  
E. Bellos ◽  
V. Stefanovic ◽  
C. Tzivanidis

The objective of this work is to investigate the impact of the geometric dimensions of parabolic trough collector (PTC) in the optical, energetic and exergetic efficiency. The module of the commercial LS-3 PTC is examined with SOLIDWORKS FLOW SIMULATION in steady-state conditions. Various combinations of reflector widths and receiver diameters are tested. The optical and the thermal performance, as well as the exergetic performance are calculated for all the examined configurations. According to the final results, higher widths demands higher receiver diameter for optimum performance. For inlet temperature equal to 200 °C, the optimum design was find to be 3000 mm width with 42.5 mm receiver diameter, with the focal length to be 1840 mm (this is kept constant in all the cases). The results of this work and the presented methodology can be used as guidelines for the design of optimum PTC in the future.


Sign in / Sign up

Export Citation Format

Share Document