Thermal performance of the solar parabolic trough collector at different flow rates: an experimental study

2017 ◽  
Vol 39 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Devander Kumar ◽  
Sudhir Kumar
2015 ◽  
Vol 787 ◽  
pp. 192-196
Author(s):  
E. Siva Reddy ◽  
R. Meenakshi Reddy ◽  
K. Krishna Reddy

Dispersing small amounts of solid nano particles into base-fluid has a significant impact on the thermo-physical properties of the base-fluid. These properties are utilized for effective capture and transportation of solar energy. This paper attempts key idea for harvesting solar energy by using alumina nanofluid in concentrating parabolic trough collectors. An experimental study is carried out to investigate the performance of a parabolic trough collector using Al2O3-H2O based nanofluid. Results clearly indicate that at same ambient, inlet temperatures, flow rate, concentration ratio etc. hike in thermal efficiency is around 5-10 % compared to the conventional Parabolic Trough Collector (PTC). Further, the effect of various parameters such as concentration ratio, receiver length, fluid velocity, volume fraction of nano particles has been studied. The different flow rates employed in the experiment are 2 ml/s, 4 ml/s and 6 ml/s. Volumetric concentration of 0.02%, 0.04% and 0.06% has been studied in the experiment. Surfactants are not introduced to avoid bubble formation. Tracking mode of parabolic trough collector is manual. Results also reveal that Al2O3-H2O based nanofluid has higher efficiency at higher flow rates.


2019 ◽  
Vol 88 (2) ◽  
pp. 20902
Author(s):  
O. Achkari ◽  
A. El Fadar

Parabolic trough collector (PTC) is one of the most widespread solar concentration technologies and represents the biggest share of the CSP market; it is currently used in various applications, such as electricity generation, heat production for industrial processes, water desalination in arid regions and industrial cooling. The current paper provides a synopsis of the commonly used sun trackers and investigates the impact of various sun tracking modes on thermal performance of a parabolic trough collector. Two sun-tracking configurations, full automatic and semi-automatic, and a stationary one have numerically been investigated. The simulation results have shown that, under the system conditions (design, operating and weather), the PTC's performance depends strongly on the kind of sun tracking technique and on how this technique is exploited. Furthermore, the current study has proven that there are some optimal semi-automatic configurations that are more efficient than one-axis sun tracking systems. The comparison of the mathematical model used in this paper with the thermal profile of some experimental data available in the literature has shown a good agreement with a remarkably low relative error (2.93%).


Solar Energy ◽  
2016 ◽  
Vol 134 ◽  
pp. 180-192 ◽  
Author(s):  
Jean-Louis Bouvier ◽  
Ghislain Michaux ◽  
Patrick Salagnac ◽  
Thiebaut Kientz ◽  
Dominique Rochier

1988 ◽  
Vol 41 (4) ◽  
pp. 623
Author(s):  
MJ O'Keefe ◽  
JLA Francey

An experimental study of flat-plate solar collectors using ethylene, propylenediene monomer (EPDM) absorber plates is descn"bed. In spite of the high thermal resistance of this material the performance is found to compare well with metal absorbers and to be in agreement with the Hottel-Whillier-Bliss equation. There is, however, an observed increase in the heat loss coefficient for mass flow rates below a critical value.


Sign in / Sign up

Export Citation Format

Share Document