scholarly journals Heavy Quark Dynamics toward thermalization: RAA, υ1, υ2, υ3

2018 ◽  
Vol 171 ◽  
pp. 18014
Author(s):  
Salvatore Plumari ◽  
Santosh K. Das ◽  
Francesco Scardina ◽  
Vincenzo Minissale ◽  
Vincenzo Greco

We describe the propagation of Heavy quarks (HQs) in the quark-gluon plasma (QGP) within a relativistic Boltzmann transport (RBT) approach. The interaction between heavy quarks and light quarks is described within quasi-particle approach which is able to catch the main features of non-perturbative interaction as the increasing of the interaction in the region of low temperature near TC. In our calculations the hadronization of charm quarks in D mesons is described by mean of an hybrid model of coalescence plus fragmentation. We show that the coalescence play a key role to get a good description of the experimental data for the nuclear suppression factor RAA and the elliptic flow υ2(pT) at both RHIC and LHC energies. Moreover, we show some recent results on the direct flow υ1 and triangular flow υ3 of D meson.

Author(s):  
Fabio Catalano

Open-charmed mesons are unique tools to study the properties of the Quark–Gluon Plasma (QGP) formed in ultra-relativistic nucleus–nucleus collisions. The nuclear modification factor ([Formula: see text]) and elliptic flow ([Formula: see text]) of [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] mesons were measured by the ALICE Collaboration in Pb–Pb collisions at [Formula: see text]. The D-meson [Formula: see text] provides information on the charm-quark interactions with the medium and the charm-quark energy loss. The D-meson elliptic flow at low transverse momentum ([Formula: see text]) gives insight into the participation of charm quarks in the collective expansion of the system and their possible in-medium thermalization. At high [Formula: see text], the [Formula: see text] is sensitive to the path-length dependence of parton energy loss. The role of the recombination mechanism is investigated measuring the [Formula: see text]-differential yield ratios between D-meson species with and without strange-quark content. Finally, the coupling of charm quarks to light quarks of the underlying medium is examined applying the Event-Shape Engineering (ESE) technique to the nonstrange D-meson elliptic flow.


2018 ◽  
Vol 192 ◽  
pp. 00016
Author(s):  
Fabio Colamaria

Heavy quarks are produced in the early stages of ultra-relativistic heavy-ion collisions, and their number is preserved throughout the subsequent evolution of the system. Therefore, they constitute ideal probes for characterising the Quark-Gluon Plasma (QGP) medium and for the study of its transport properties. In particular, heavy quarks interact with the partonic constituents of the plasma, losing energy, and are expected to be sensitive to the medium collective motion induced by its hydrodynamical evolution. In pp collisions, the measurement of heavy-flavour hadron production provides a reference for heavyion studies, and allows also testing perturbative QCD calculations in a wide range of collision energies. Similar studies in p-Pb collisions help in disentangling cold nuclear matter effects from modifications induced by the presence of a QGP medium, and are also useful to investigate the possible existence of collective phenomena also in this system. The ALICE detector provides excellent performances in terms of particle identification and vertexing capabilities. Hence, it is fully suited for the reconstruction of charmed mesons and baryons and of electrons from heavy-flavour hadron decays at central rapidity. Furthermore, the ALICE muon spectrometer allows reconstructing heavy-flavour decay muons at forward rapidity. A review of the main ALICE results on open heavy flavour production in pp, p-Pb and Pb-Pb collisions is presented. Recent, more differential measurements are also shown, including azimuthal correlations of heavy-flavour particles with charged hadrons in p-Pb collisions, and D-meson tagged-jet production in p-Pb and Pb-Pb collisions.


2007 ◽  
Vol 16 (07n08) ◽  
pp. 2061-2065
Author(s):  
BIN ZHANG

J/ψ production is closely related to the production of the strongly interacting Quark-Gluon Plasma (sQGP) in relativistic heavy ion collisions. To study the effects of charm quark dynamics on J/ψ production, the phase space distributions of charm and anti-charm quarks are generated using A Multi-Phase Transport (AMPT) model. These charm quarks then coalesce into J/ψ particles. The production and flow of J/ψ show strong sensitivity to final state charm interactions. The results are compared to charm quark and D meson results from the AMPT model and recent predictions from other models.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Lin Chen ◽  
Shu-Yi Wei ◽  
Han-Zhong Zhang

AbstractDifferent types of high energy hard probes are used to extract the jet transport properties of the Quark-Gluon Plasma created in heavy-ion collisions, of which the heavy boson tagged jets are undoubtedly the most sophisticated due to its clean decay signature and production mechanism. In this study, we used the resummation improved pQCD approach with high order correction in the hard factor to calculate the momentum ratio $$x_J$$ x J distributions of Z and Higgs (H) tagged jets. We found that the formalism can provide a good description of the 5.02 TeV pp data. Using the BDMPS energy loss formalism, along with the OSU 2 + 1D hydro to simulate the effect of the medium, we extracted the value of the jet transport coefficient to be around $${\hat{q}}_0=4\sim 8~\text {GeV}^2/\text {fm}$$ q ^ 0 = 4 ∼ 8 GeV 2 / fm by comparing with the Z + jet PbPb experimental data. The H + jet $$x_J$$ x J distribution were calculated in a similar manner in contrast and found to have a stronger Sudakov effect as compared with the Z + jet distribution. This study uses a clean color-neutral boson as trigger to study the jet quenching effect and serves as a complimentary method in the extraction of the QGP’s transport coefficient in high energy nuclear collisions.


2007 ◽  
Vol 16 (07n08) ◽  
pp. 2048-2054 ◽  
Author(s):  
LI YAN ◽  
PENGFEI ZHUANG ◽  
NU XU

The charm quark thermalization in quark-gluon plasma is described by a transport model in relaxation time approximation. Combining the transport equation for charm quarks with the hydrodynamic description for the medium, we calculated the charm quark transverse momentum distribution and discussed its dependence on the relaxation time.


1990 ◽  
Vol 237 (2) ◽  
pp. 153-158 ◽  
Author(s):  
D.H. Rischke ◽  
M.I. Gorenstein ◽  
H. Stöcker ◽  
W. Greiner

2005 ◽  
Vol 26 (3) ◽  
pp. 333-337 ◽  
Author(s):  
S. Terranova ◽  
D. M. Zhou ◽  
A. Bonasera

Sign in / Sign up

Export Citation Format

Share Document