scholarly journals N = 2* Yang-Mills on the Lattice

2018 ◽  
Vol 175 ◽  
pp. 08019
Author(s):  
Anosh Joseph

The N = 2* Yang-Mills theory in four dimensions is a non-conformal theory that appears as a mass deformation of maximally supersymmetric N = 4 Yang-Mills theory. This theory also takes part in the AdS/CFT correspondence and its gravity dual is type IIB supergravity on the Pilch-Warner background. The finite temperature properties of this theory have been studied recently in the literature. It has been argued that at large N and strong coupling this theory exhibits no thermal phase transition at any nonzero temperature. The low temperature N = 2* plasma can be compared to the QCD plasma. We provide a lattice construction of N = 2* Yang-Mills on a hypercubic lattice starting from the N = 4 gauge theory. The lattice construction is local, gauge-invariant, free from fermion doubling problem and preserves a part of the supersymmetry. This nonperturbative formulation of the theory can be used to provide a highly nontrivial check of the AdS/CFT correspondence in a non-conformal theory.

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Georg Bergner ◽  
Norbert Bodendorfer ◽  
Masanori Hanada ◽  
Enrico Rinaldi ◽  
Andreas Schäfer ◽  
...  

2003 ◽  
Vol 18 (33n35) ◽  
pp. 2415-2422 ◽  
Author(s):  
V. P. NAIR

I review the analysis of (2+1)-dimensional Yang-Mills (YM2+1) theory via the use of gauge-invariant matrix variables. The vacuum wavefunction, string tension, the propagator mass for gluons, its relation to the magnetic mass for YM3+1at nonzero temperature and the extension of our analysis to the Yang-Mills-Chern-Simons theory are discussed. A possible extension to 3 + 1 dimensions is also briefly considered.


2001 ◽  
Vol 16 (06) ◽  
pp. 1015-1108 ◽  
Author(s):  
SHIN'ICHI NOJIRI ◽  
SERGEI D. ODINTSOV

We review (mainly) quantum effects in the theories where the gravity sector is described by metric and dilaton. The one-loop effective action for dilatonic gravity in two and four dimensions is evaluated. Renormalization group equations are constructed. The conformal anomaly and induced effective action for 2d and 4d dilaton coupled theories are found. It is applied to the study of quantum aspects of black hole thermodynamics, like calculation of Hawking radiation and quantum corrections to black hole parameters and investigation of quantum instability for such objects with multiple horizons. The use of the above effective action in the construction of nonsingular cosmological models in Einstein or Brans–Dicke (super)gravity and investigation of induced wormholes in supersymmetric Yang–Mills theory are given.5d dilatonic gravity (bosonic sector of compactified IIB supergravity) is discussed in connection with bulk/boundary (or AdS/CFT) correspondence. Running gauge coupling and quark–antiquark potential for boundary gauge theory at zero or nonzero temperature are calculated from d=5 dilatonic anti-de Sitter-like background solution which represents anti-de Sitter black hole for periodic time.


2001 ◽  
Vol 16 (11) ◽  
pp. 1989-2001 ◽  
Author(s):  
S. ARNONE ◽  
YU. A. KUBYSHIN ◽  
T. R. MORRIS ◽  
J. F. TIGHE

A gauge invariant regularisation for dealing with pure Yang-Mills theories within the exact renormalization group approach is proposed. It is based on the regularisation via covariant higher derivatives and includes auxiliary Pauli-Villars fields which amounts to a spontaneously broken SU(N|N) super-gauge theory. We demonstrate perturbatively that the extended theory is ultra-violet finite in four dimensions and argue that it has a sensible limit when the regularization cutoff is removed.


1991 ◽  
Vol 06 (11) ◽  
pp. 969-976 ◽  
Author(s):  
C.M. HULL ◽  
B. SPENCE

The coupling of the 2n-dimensional Wess-Zumino-Witten action to gauge fields is discussed and a simple manifestly gauge-invariant form of the gauged Wess-Zumino term is found which is an integral over a (2n+1)-dimensional space whose boundary is space-time. In two and four dimensions, our actions give simple forms for the action describing coset conformal field theories and the low-energy QCD effective action, respectively.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
I. L. Buchbinder ◽  
E. A. Ivanov ◽  
V. A. Ivanovskiy

Abstract We develop a novel bi-harmonic $$ \mathcal{N} $$ N = 4 superspace formulation of the $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills theory (SYM) in four dimensions. In this approach, the $$ \mathcal{N} $$ N = 4 SYM superfield constraints are solved in terms of on-shell $$ \mathcal{N} $$ N = 2 harmonic superfields. Such an approach provides a convenient tool of constructing the manifestly $$ \mathcal{N} $$ N = 4 supersymmetric invariants and further rewriting them in $$ \mathcal{N} $$ N = 2 harmonic superspace. In particular, we present $$ \mathcal{N} $$ N = 4 superfield form of the leading term in the $$ \mathcal{N} $$ N = 4 SYM effective action which was known previously in $$ \mathcal{N} $$ N = 2 superspace formulation.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Arshia Momeni ◽  
Justinas Rumbutis ◽  
Andrew J. Tolley

Abstract We consider the double copy of massive Yang-Mills theory in four dimensions, whose decoupling limit is a nonlinear sigma model. The latter may be regarded as the leading terms in the low energy effective theory of a heavy Higgs model, in which the Higgs has been integrated out. The obtained double copy effective field theory contains a massive spin-2, massive spin-1 and a massive spin-0 field, and we construct explicitly its interacting Lagrangian up to fourth order in fields. We find that up to this order, the spin-2 self interactions match those of the dRGT massive gravity theory, and that all the interactions are consistent with a Λ3 = (m2MPl)1/3 cutoff. We construct explicitly the Λ3 decoupling limit of this theory and show that it is equivalent to a bi-Galileon extension of the standard Λ3 massive gravity decoupling limit theory. Although it is known that the double copy of a nonlinear sigma model is a special Galileon, the decoupling limit of massive Yang-Mills theory is a more general Galileon theory. This demonstrates that the decoupling limit and double copy procedures do not commute and we clarify why this is the case in terms of the scaling of their kinematic factors.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
E. I. Buchbinder ◽  
D. Hutchings ◽  
S. M. Kuzenko ◽  
M. Ponds

Abstract Within the framework of $$ \mathcal{N} $$ N = 1 anti-de Sitter (AdS) supersymmetry in four dimensions, we derive superspin projection operators (or superprojectors). For a tensor superfield $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)}:= {\mathfrak{V}}_{\left(\alpha 1\dots \alpha m\right)\left({\overset{\cdot }{\alpha}}_1\dots {\overset{\cdot }{\alpha}}_n\right)} $$ V α m α ⋅ n ≔ V α 1 … αm α ⋅ 1 … α ⋅ n on AdS superspace, with m and n non-negative integers, the corresponding superprojector turns $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)} $$ V α m α ⋅ n into a multiplet with the properties of a conserved conformal supercurrent. It is demonstrated that the poles of such superprojectors correspond to (partially) massless multiplets, and the associated gauge transformations are derived. We give a systematic discussion of how to realise the unitary and the partially massless representations of the $$ \mathcal{N} $$ N = 1 AdS4 superalgebra $$ \mathfrak{osp} $$ osp (1|4) in terms of on-shell superfields. As an example, we present an off-shell model for the massive gravitino multiplet in AdS4. We also prove that the gauge-invariant actions for superconformal higher-spin multiplets factorise into products of minimal second-order differential operators.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hongxiang Tian ◽  
Enze Gong ◽  
Chongsi Xie ◽  
Yi-Jian Du

Abstract The recursive expansion of tree level multitrace Einstein-Yang-Mills (EYM) amplitudes induces a refined graphic expansion, by which any tree-level EYM amplitude can be expressed as a summation over all possible refined graphs. Each graph contributes a unique coefficient as well as a proper combination of color-ordered Yang-Mills (YM) amplitudes. This expansion allows one to evaluate EYM amplitudes through YM amplitudes, the latter have much simpler structures in four dimensions than the former. In this paper, we classify the refined graphs for the expansion of EYM amplitudes into N k MHV sectors. Amplitudes in four dimensions, which involve k + 2 negative-helicity particles, at most get non-vanishing contribution from graphs in N k′ (k′ ≤ k) MHV sectors. By the help of this classification, we evaluate the non-vanishing amplitudes with two negative-helicity particles in four dimensions. We establish a correspondence between the refined graphs for single-trace amplitudes with $$ \left({g}_i^{-},{g}_j^{-}\right) $$ g i − g j − or $$ \left({h}_i^{-},{g}_j^{-}\right) $$ h i − g j − configuration and the spanning forests of the known Hodges determinant form. Inspired by this correspondence, we further propose a symmetric formula of double-trace amplitudes with $$ \left({g}_i^{-},{g}_j^{-}\right) $$ g i − g j − configuration. By analyzing the cancellation between refined graphs in four dimensions, we prove that any other tree amplitude with two negative-helicity particles has to vanish.


Sign in / Sign up

Export Citation Format

Share Document