scholarly journals Weakly coupled conformal gauge theories on the lattice

2018 ◽  
Vol 175 ◽  
pp. 08028
Author(s):  
Zoltan Fodor ◽  
Kieran Holland ◽  
Julius Kuti ◽  
Daniel Nogradi ◽  
Chik Him Wong

Results are reported for the β-function of weakly coupled conformal gauge theories on the lattice, SU(3) with Nf = 14 fundamental and Nf = 3 sextet fermions. The models are chosen to be close to the upper end of the conformal window where perturbation theory is reliable hence a fixed point is expected. The study serves as a test of how well lattice methods perform in the weakly coupled conformal cases. We also comment on the 5-loop β-function of two models close to the lower end of the conformal window, SU(3) with Nf = 12 fundamental and Nf = 2 sextet fermions.

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Soumyadeep Chaudhuri ◽  
Eliezer Rabinovici

Abstract Considering marginally relevant and relevant deformations of the weakly coupled (3 + 1)-dimensional large N conformal gauge theories introduced in [1], we study the patterns of phase transitions in these systems that lead to a symmetry-broken phase in the high temperature limit. These deformations involve only the scalar fields in the models. The marginally relevant deformations are obtained by varying certain double trace quartic couplings between the scalar fields. The relevant deformations, on the other hand, are obtained by adding masses to the scalar fields while keeping all the couplings frozen at their fixed point values. At the N → ∞ limit, the RG flows triggered by these deformations approach the aforementioned weakly coupled CFTs in the UV regime. These UV fixed points lie on a conformal manifold with the shape of a circle in the space of couplings. As shown in [1], in certain parameter regimes a subset of points on this manifold exhibits thermal order characterized by the spontaneous breaking of a global ℤ2 or U(1) symmetry and Higgsing of a subset of gauge bosons at all nonzero temperatures. We show that the RG flows triggered by the marginally relevant deformations lead to a weakly coupled IR fixed point which lacks the thermal order. Thus, the systems defined by these RG flows undergo a transition from a disordered phase at low temperatures to an ordered phase at high temperatures. This provides examples of both inverse symmetry breaking and symmetry nonrestoration. For the relevant deformations, we demonstrate that a variety of phase transitions are possible depending on the signs and magnitudes of the squares of the masses added to the scalar fields. Using thermal perturbation theory, we derive the approximate values of the critical temperatures for all these phase transitions. All the results are obtained at the N → ∞ limit. Most of them are found in a reliable weak coupling regime and for others we present qualitative arguments.


2010 ◽  
Vol 25 (27n28) ◽  
pp. 5162-5174 ◽  
Author(s):  
ZOLTÁN FODOR ◽  
KIERAN HOLLAND ◽  
JULIUS KUTI ◽  
DÁNIEL NÓGRÁDI ◽  
CHRIS SCHROEDER

We present selected new results on chiral symmetry breaking in nearly conformal gauge theories with fermions in the fundamental representation of the SU (3) color gauge group. We found chiral symmetry breaking (χSB) for all flavors between Nf = 4 and Nf = 12 with most of the results discussed here for Nf = 4, 8, 12 as we approach the conformal window. To identify χSB we apply several methods which include, within the framework of chiral perturbation theory, the analysis of the Goldstone spectrum in the p -regime and the spectrum of the fermion Dirac operator with eigenvalue distributions of random matrix theory in the ϵ-regime. Chiral condensate enhancement is observed with increasing Nf when the electroweak symmetry breaking scale F is held fixed in technicolor language. Important finite-volume consistency checks from the theoretical understanding of the SU(Nf) rotator spectrum of the δ-regime are discussed. We also consider these gauge theories at Nf = 16 inside the conformal window. Our work on the running coupling is presented separately.1


2010 ◽  
Vol 25 (27n28) ◽  
pp. 5105-5113 ◽  
Author(s):  
V. A. MIRANSKY

The dynamics with an infrared stable fixed point in the conformal window in QCD like theories with a relatively large number of fermion flavors is reviewed. The emphasis is on the description of a clear signature for the conformal window, which in particular can be useful for lattice computer simulations of these gauge theories.


2001 ◽  
Vol 16 (supp01c) ◽  
pp. 913-915 ◽  
Author(s):  
F. A. Chishtie ◽  
V. Elias ◽  
V. A. Miransky ◽  
T. G. Steele

Padé-approximant treatments of the known terms of the QCD β-function are seen to develop possible infrared fixed point structure only if the number of fermion flavours is sufficiently large. This flavour threshold is seen to be between six and nine flavours, depending upon both the specific choice of approximant as well as on the presently-unknown five-loop β-function contribution. Below this flavour threshold, Padé approximants based upon the QCD β-function manifest the same infrared attractor structure as that which characterizes the exact NSVZ β-function of supersymmetric gluodynamics. Such infrared attractor structure is also seen to characterize Padé-approximant treatments of vector SU(N) gauge theory in the large N limit, suggesting common infrared dynamics for the strong and weak phases of this theory.


2015 ◽  
Vol 30 (24) ◽  
pp. 1550155
Author(s):  
Yu Nakayama

Gauging extra matter is a common way to couple two CFTs discontinuously. We may consider gauging matter by strongly coupled gauge theories at criticality rather than by weakly coupled (asymptotic free) gauge theories. It often triggers relevant deformations and possibly leads to a nontrivial fixed point. In many examples such as the IR limit of SQCDs (and their variants), the relevant RG flow induced by this strong gauging makes the total central charge [Formula: see text] increase rather than decrease compared with the sum of the original decoupled CFTs. The dilaton effective field theory argument given by Komargodski and Schwimmer does not apply because strong gauging is not a simple deformation by operators in the original two decoupled CFTs and it may not be UV complete. When the added matter is vector-like, one may emulate strong gauging in a UV completed manner by decoupling of ghost matter. While the UV completed description makes the dilaton effective field theory argument possible, due to the nonunitarity, we cannot conclude the positivity of the central charge difference in accordance with the observations in various examples that show the contrary.


2010 ◽  
Vol 25 (24) ◽  
pp. 4603-4621 ◽  
Author(s):  
THOMAS A. RYTTOV ◽  
FRANCESCO SANNINO

We investigate the gauge dynamics of nonsupersymmetric SU (N) gauge theories featuring the simultaneous presence of fermionic matter transforming according to two distinct representations of the underlying gauge group. We bound the regions of flavors and colors which can yield a physical infrared fixed point. As a consistency check we recover the previously investigated bounds of the conformal windows when restricting to a single matter representation. The earlier conformal windows can be imagined to be part now of the new conformal house. We predict the nonperturbative anomalous dimensions at the infrared fixed points. We further investigate the effects of adding mass terms to the condensates on the conformal house chiral dynamics and construct the simplest instanton induced effective Lagrangian terms.


2006 ◽  
Vol 21 (23n24) ◽  
pp. 4627-4761 ◽  
Author(s):  
OLIVER J. ROSTEN

Within the framework of the Exact Renormalization Group, a manifestly gauge invariant calculus is constructed for SU (N) Yang–Mills. The methodology is comprehensively illustrated with a proof, to all orders in perturbation theory, that the β function has no explicit dependence on either the seed action or details of the covariantization of the cutoff. The cancellation of these nonuniversal contributions is done in an entirely diagrammatic fashion.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Matteo Beccaria ◽  
Francesco Galvagno ◽  
Azeem Hasan

2012 ◽  
Vol 2012 (5) ◽  
Author(s):  
Igor R. Klebanov ◽  
Silviu S. Pufu ◽  
Subir Sachdev ◽  
Benjamin R. Safdi

Sign in / Sign up

Export Citation Format

Share Document