scholarly journals Airport low-level wind shear lidar observation at beijing capital international airport

2018 ◽  
Vol 176 ◽  
pp. 06013
Author(s):  
Hongwei Zhang ◽  
Songhua Wu ◽  
Qichao Wang ◽  
Bingyi Liu ◽  
Xiaochun Zhai

Ocean University of China lidar team operated a pulse coherent Doppler lidar (PCDL) for the low level wind shear monitoring at the Beijing Capital International Airport (BCIA) in 2015. The experiment configuration, observation modes is presented. A case study shows that the low level wind shear events at the southern end of 18R/36L runway were mainly caused by the trees and buildings along the glide path under strong northwest wind conditions.

Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Hongwei Zhang ◽  
Xiaoying Liu ◽  
Qichao Wang ◽  
Jianjun Zhang ◽  
Zhiqiang He ◽  
...  

Low-level wind shear is usually to be a rapidly changing meteorological phenomenon that cannot be ignored in aviation security service by affecting the air speed of landing and take-off aircrafts. The lidar team in Ocean University of China (OUC) carried out the long term particular researches on the low-level wind shear identification and regional wind shear inducement search at Beijing Capital International Airport (BCIA) from 2015 to 2020 by operating several pulsed coherent Doppler lidar (PCDL) systems. On account of the improved glide path scanning strategy and virtual multiple wind anemometers based on the rang height indicator (RHI) modes, the small-scale meteorological phenomenon along the glide path and/or runway center line direction can be captured. In this paper, the device configuration, scanning strategies, and results of the observation data are proposed. The algorithms to identify the low-level wind shear based on the reconstructed headwind profiles data have been tested and proved based on the lidar data obtained from December 2018 to January 2019. High spatial resolution observation data at vertical direction are utilized to study the regional wind shear inducement at the 36L end of BCIA under strong northwest wind conditions.


2020 ◽  
Vol 237 ◽  
pp. 06004
Author(s):  
Xiaoying Liu ◽  
Songhua Wu ◽  
Hongwei Zhang ◽  
Jianjun Zhang ◽  
Zhiqiang He ◽  
...  

In November 2018, the lidar-based wind shear synchronous experiment was performed at Beijing Capital International Airport (BCIA). In this experiment, aiming at the measurement of the terrain-induced wind shear and the wind field around the runway, the glide path scanning mode, and the RHI strategy were conducted alternately. Radial velocity retrieved from the glide path scanning can obviously present the wakes caused by complex terrain (e.g., hills, tall trees, residential and terminal buildings). The Pulse Coherent Doppler Lidar (PCDL) warned the terrain-induced wind shear, which was verified by the pilot report. The wind field structure around the runway under the wake effect and the building shielding effect is also analyzed.


2019 ◽  
Vol 96 ◽  
pp. 113-122 ◽  
Author(s):  
Hongwei Zhang ◽  
Songhua Wu ◽  
Qichao Wang ◽  
Bingyi Liu ◽  
Bin Yin ◽  
...  

2008 ◽  
Vol 25 (5) ◽  
pp. 637-655 ◽  
Author(s):  
C. M. Shun ◽  
P. W. Chan

Abstract In December 2005, operational wind shear alerting at the Hong Kong International Airport (HKIA) reached an important milestone with the launch of the automatic Lidar (light detection and ranging) Windshear Alerting System (LIWAS). This signifies that the anemometer-based and radar-based wind shear detection technologies deployed worldwide in the twentieth century have been further advanced by the addition of the lidar—a step closer to all-weather coverage. Unlike the microburst and gust front, which have a well-defined coherent vertical structure in the lowest several hundred meters of the atmosphere, terrain-induced wind shear tends to have high spatial and temporal variability. To detect the highly changeable winds to be encountered by the aircraft under terrain-induced wind shear situations, the Hong Kong Observatory devises an innovative glide path scan (GPScan) strategy for the lidar, pointing the laser beam toward the approach and departure glide paths, with the changes in azimuth and elevation angles concerted. The purpose of the GPScans is to derive the headwind profiles and hence the wind shear along the glide paths. Developed based on these GPScans, LIWAS is able to capture about 76% of the wind shear events reported by pilots over the most-used approach corridor under clear-air conditions. During the past two years, further developments of the lidar took place at HKIA, including the use of runway-specific lidar to further enhance the wind shear detection performance.


2020 ◽  
Vol 34 (3) ◽  
pp. 633-645 ◽  
Author(s):  
Lanqian Li ◽  
Aimei Shao ◽  
Kaijun Zhang ◽  
Nan Ding ◽  
Pak-Wai Chan

2019 ◽  
Vol 131 ◽  
pp. 01037
Author(s):  
Ting Xu ◽  
Wei Niu

Low-level wind shear is a hazardous phenomenon for aircraft, a low-level wind shear case of Xining airport selected from pilot reports is analysed in this paper. Using ERA-Interim data, the weather pattern and characteristics of wind distribution are discussed. The result indicates cold high pressure accompanied by strong wind and terrain is the main reason of this low-level wind shear case.


2006 ◽  
Author(s):  
K. Sasaki ◽  
S. Ishii ◽  
K. Mizutani ◽  
H. Kanno ◽  
D. Matsushima ◽  
...  

2018 ◽  
Vol 176 ◽  
pp. 06017
Author(s):  
Brian Carroll ◽  
Belay Demoz ◽  
Timothy Bonin ◽  
Ruben Delgado

A low-level jet (LLJ) is a prominent wind speed peak in the lower troposphere. Nocturnal LLJs have been shown to transport and mix atmospheric constituents from the residual layer down to the surface, breaching quiescent nocturnal conditions due to high wind shear. A new fuzzy logic algorithm combining turbulence and aerosol information from Doppler lidar scans can resolve the strength and depth of this mixing below the jet. Conclusions will be drawn about LLJ relations to turbulence and mixing.


2020 ◽  
Vol 59 (2) ◽  
pp. 193-206 ◽  
Author(s):  
Kai-Kwong Hon

Abstract“Low-level wind shear” is a known aviation safety hazard and refers to a sustained change in head wind encountered by an aircraft during takeoff or landing. Because of their small spatiotemporal scales and high variability, automatic alerting of wind shears at airports around the world is almost exclusively detection based (using remote sensing equipment). Numerical modeling studies so far mainly cover individual cases and lack systematic validation. This paper presents the first statistical evaluation of numerical weather prediction (NWP) model performance in predicting low-level wind shear at a major international airport over a 2-yr continuous period. The 200-m-resolution Aviation Model (AVM) of the Hong Kong Observatory is used to generate runway-specific wind shear forecasts at 1-min output intervals for the Hong Kong International Airport (HKIA), known for its susceptibility to wind shear occurrence. The AVM forecasts are then validated against over 800 actual reports of wind shear by aircraft pilots over the two major arrival runway corridors, 07LA and 25RA, at HKIA between 2014 and 2015 using a verification scheme with the same level of spatiotemporal stringency as operational alerting systems at HKIA. With “relative operating characteristic” analysis, positive skill is consistently observed across both runway corridors throughout the study period and across all considered forecast lead times out to 6 h ahead. This study serves to establish and document the current capability of fine-resolution NWP in predicting the phenomenon of low-level wind shear for aviation weather applications.


Sign in / Sign up

Export Citation Format

Share Document