scholarly journals Mixed layer depths via Doppler lidar during low-level jet events

2018 ◽  
Vol 176 ◽  
pp. 06017
Author(s):  
Brian Carroll ◽  
Belay Demoz ◽  
Timothy Bonin ◽  
Ruben Delgado

A low-level jet (LLJ) is a prominent wind speed peak in the lower troposphere. Nocturnal LLJs have been shown to transport and mix atmospheric constituents from the residual layer down to the surface, breaching quiescent nocturnal conditions due to high wind shear. A new fuzzy logic algorithm combining turbulence and aerosol information from Doppler lidar scans can resolve the strength and depth of this mixing below the jet. Conclusions will be drawn about LLJ relations to turbulence and mixing.

Wind Energy ◽  
2016 ◽  
Vol 20 (6) ◽  
pp. 987-1002 ◽  
Author(s):  
Y. L. Pichugina ◽  
W. A. Brewer ◽  
R. M. Banta ◽  
A. Choukulkar ◽  
C. T. M. Clack ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Hongwei Zhang ◽  
Xiaoying Liu ◽  
Qichao Wang ◽  
Jianjun Zhang ◽  
Zhiqiang He ◽  
...  

Low-level wind shear is usually to be a rapidly changing meteorological phenomenon that cannot be ignored in aviation security service by affecting the air speed of landing and take-off aircrafts. The lidar team in Ocean University of China (OUC) carried out the long term particular researches on the low-level wind shear identification and regional wind shear inducement search at Beijing Capital International Airport (BCIA) from 2015 to 2020 by operating several pulsed coherent Doppler lidar (PCDL) systems. On account of the improved glide path scanning strategy and virtual multiple wind anemometers based on the rang height indicator (RHI) modes, the small-scale meteorological phenomenon along the glide path and/or runway center line direction can be captured. In this paper, the device configuration, scanning strategies, and results of the observation data are proposed. The algorithms to identify the low-level wind shear based on the reconstructed headwind profiles data have been tested and proved based on the lidar data obtained from December 2018 to January 2019. High spatial resolution observation data at vertical direction are utilized to study the regional wind shear inducement at the 36L end of BCIA under strong northwest wind conditions.


2018 ◽  
Vol 33 (5) ◽  
pp. 1109-1120 ◽  
Author(s):  
David E. Jahn ◽  
William A. Gallus

Abstract The Great Plains low-level jet (LLJ) is influential in the initiation and evolution of nocturnal convection through the northward advection of heat and moisture, as well as convergence in the region of the LLJ nose. However, accurate numerical model forecasts of LLJs remain a challenge, related to the performance of the planetary boundary layer (PBL) scheme in the stable boundary layer. Evaluated here using a series of LLJ cases from the Plains Elevated Convection at Night (PECAN) program are modifications to a commonly used local PBL scheme, Mellor–Yamada–Nakanishi–Niino (MYNN), available in the Weather Research and Forecasting (WRF) Model. WRF forecast mean absolute error (MAE) and bias are calculated relative to PECAN rawinsonde observations. The first MYNN modification invokes a new set of constants for the scheme closure equations that, in the vicinity of the LLJ, decreases forecast MAEs of wind speed, potential temperature, and specific humidity more than 19%. For comparison, the Yonsei University (YSU) scheme results in wind speed MAEs 22% lower but specific humidity MAEs 17% greater than in the original MYNN scheme. The second MYNN modification, which incorporates the effects of potential kinetic energy and uses a nonzero mixing length in stable conditions as dependent on bulk shear, reduces wind speed MAEs 66% for levels below the LLJ, but increases MAEs at higher levels. Finally, Rapid Refresh analyses, which are often used for forecast verification, are evaluated here and found to exhibit a relatively large average wind speed bias of 3 m s−1 in the region below the LLJ, but with relatively small potential temperature and specific humidity biases.


Author(s):  
Saïdou Madougou ◽  
Frederique Saïd ◽  
Bernard Campistron ◽  
Fadel Kebe Cheikh

In the Sahel, a vertical wind shear appears in the dry and in the wet seasons. In Niamey, Niger, during the dry season, the period of strong shears is clearly linked to the Nocturnal Low Level Jet (LLJ) since it occurs in a narrow time period around 06H00 UTC at 60% of the cases reach shears which require an alert to the pilots (higher than 4 ms-1 per 100 m). The majority of cases occur during the night with a wind shear direction between 90 and 150° per 100 m, which is shown that it is dangerous for aircraft. In Bamako, Mali, high wind shears represent (higher than 4 ms-1 per 100 m) only 16-22% of the cases and can occur at any time of the day. There are, however, 8% of the cases, the whole day long, when the wind shear can reach more than 6 ms-1 per 100 m. Most of the wind shear directions are also between 0 and 90° per 100 m during the night. This is why the Agency for the safety of aircraft navigation in Africa and Madagascar (ASECNA) has put in 2004 at Bamako airport an UHF wind profiler radar for monitoring nocturnal strong Low Level Jet wind shear which occur regularly in this airport.


2010 ◽  
Vol 67 (10) ◽  
pp. 3384-3408 ◽  
Author(s):  
Adam J. French ◽  
Matthew D. Parker

Abstract Some recent numerical experiments have examined the dynamics of initially surface-based squall lines that encounter an increasingly stable boundary layer, akin to what occurs with the onset of nocturnal cooling. The present study builds on that work by investigating the added effect of a developing nocturnal low-level jet (LLJ) on the convective-scale dynamics of a simulated squall line. The characteristics of the simulated LLJ atop a simulated stable boundary layer are based on past climatological studies of the LLJ in the central United States. A variety of jet orientations are tested, and sensitivities to jet height and the presence of low-level cooling are explored. The primary impacts of adding the LLJ are that it alters the wind shear in the layers just above and below the jet and that it alters the magnitude of the storm-relative inflow in the jet layer. The changes to wind shear have an attendant impact on low-level lifting, in keeping with current theories for gust front lifting in squall lines. The changes to the system-relative inflow, in turn, impact total upward mass flux and precipitation output. Both are sensitive to the squall line–relative orientation of the LLJ. The variations in updraft intensity and system-relative inflow are modulated by the progression of the low-level cooling, which mimics the development of a nocturnal boundary layer. While the system remains surface-based, the below-jet shear has the largest impact on lifting, whereas the above-jet shear begins to play a larger role as the system becomes elevated. Similarly, as the system becomes elevated, larger changes to system-relative inflow are observed because of the layer of potentially buoyant inflowing parcels becoming confined to the layer of the LLJ.


1989 ◽  
Vol 41 (3) ◽  
pp. 147-156 ◽  
Author(s):  
J. Horn ◽  
H. C. Davies
Keyword(s):  

2021 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Patricia de Zea Bermudez ◽  
Iago Algarra ◽  
Luis Gimeno

Abstract The Great Plains Low-Level Jet system consists of very strong winds in the lower troposphere that transport a huge amount of moisture from the Gulf of Mexico to the American Great Plains. This paper aims to study the extremes of the Transported Moisture (TM) from the GPLLJ source region to the jet domain; and, for low and high TM, to analyze the extremal dependence between the upper tail of the precipitation in the GPLLJ sink region and the lower tail of the tropospheric stability in that region (omega). The declustered extremes of TM were analyzed using Peaks Over Threshold (POT). A non-stationary Exponential model was fitted to the cluster maxima. Estimated return levels show that the extremes of TM are expected to decrease in the future. This is meteorologically congruent with the known displacement of the western edge of the North Atlantic Subtropical High, which controls atmospheric circulation in the North Atlantic, and to a higher scale with the change of phase from negative to positive of the Atlantic Multidecadal Oscillation. Bilogistic and Logistic models were fitted to the extremes of (-omega, precipitation) for low and high TM, respectively. The extremal dependence between "-omega" and precipitation proves to be stronger in the case of high TM. This confirms that dynamical instability represented by “-omega” is the most important parameter for achieving high values of precipitation once there is a mechanism that allows the continuous supply of large amounts of moisture, such as the derived from a low-level jet system.


2021 ◽  
Vol 6 (4) ◽  
pp. 1043-1059
Author(s):  
Mithu Debnath ◽  
Paula Doubrawa ◽  
Mike Optis ◽  
Patrick Hawbecker ◽  
Nicola Bodini

Abstract. As the offshore wind industry emerges on the US East Coast, a comprehensive understanding of the wind resource – particularly extreme events – is vital to the industry's success. Such understanding has been hindered by a lack of publicly available wind profile observations in offshore wind energy areas. However, the New York State Energy Research and Development Authority recently funded the deployment of two floating lidars within two current lease areas off the coast of New Jersey. These floating lidars provide publicly available wind speed data from 20 to 200 m height with a 20 m vertical resolution. In this study, we leverage a year of these lidar data to quantify and characterize the frequent occurrence of high-wind-shear and low-level-jet events, both of which will have a considerable impact on turbine operation. In designing a detection algorithm for these events, we find that the typical, non-dimensional power-law-based wind shear exponent is insufficient to identify many of these extreme, high-wind-speed events. Rather, we find that the simple vertical gradient of wind speed better captures the events. Based on this detection method, we find that almost 100 independent events occur throughout the year with mean wind speed at 100 m height and wind speed gradient of 16 m s−1 and 0.05 s−1, respectively. The events have strong seasonal variability, with the highest number of events in summer and the lowest in winter. A detailed analysis reveals that these events are enabled by an induced stable stratification when warmer air from the south flows over the colder mid-Atlantic waters, leading to a positive air–sea temperature difference.


2019 ◽  
Vol 147 (3) ◽  
pp. 1029-1046 ◽  
Author(s):  
Stephanie Redfern ◽  
Joseph B. Olson ◽  
Julie K. Lundquist ◽  
Christopher T. M. Clack

Abstract Wind power installations have been increasing in recent years. Because wind turbines can influence local wind speeds, temperatures, and surface fluxes, weather forecasting models should consider their effects. Wind farm parameterizations do currently exist for numerical weather prediction models. They generally consider two turbine impacts: elevated drag in the region of the wind turbine rotor disk and increased turbulent kinetic energy production. The wind farm parameterization available in the Weather Research and Forecasting (WRF) Model calculates this drag and TKE as a function of hub-height wind speed. However, recent work has suggested that integrating momentum over the entire rotor disk [via a rotor-equivalent wind speed (REWS)] is more appropriate, especially for cases with high wind shear. In this study, we implement the REWS in the WRF wind farm parameterization and evaluate its impacts in an idealized environment, with varying amounts of wind speed shear and wind directional veer. Specifically, we evaluate three separate cases: neutral stability with low wind shear, high stability with high wind shear, and high stability with nonlinear wind shear. For most situations, use of the REWS with the wind farm parameterization has marginal impacts on model forecasts. However, for scenarios with highly nonlinear wind shear, the REWS can significantly affect results.


2019 ◽  
Vol 124 (16) ◽  
pp. 9141-9160 ◽  
Author(s):  
Brian J. Carroll ◽  
Belay B. Demoz ◽  
Ruben Delgado
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document