scholarly journals Hadronic interaction studied by TA

2019 ◽  
Vol 210 ◽  
pp. 02003
Author(s):  
Takashi Sako

Two studies by the Telescope Array group related to the hadronic interaction observed with Extensive Air Showers are reviewed. (1) Inelastic p-air cross section $ \sigma _{p - air}^{inel} = 567.0 \pm 70.5\,[{\rm{stat]}}_{ - 25}^{ + 29} [{\rm{sys}}]\,{\rm{mb}} $ and total p-p cross section $ \sigma _{p - p}^{tot} = 170_{ - 44}^{ + 48} [{\rm{stat}}]_{ - 17}^{ + 19} [{\rm{sys}}]\,{\rm{mb}} $ were determined using the 5 years of TA hybrid data with one of the 3 FD stations. These results at the highest energy $ \sqrt {S_{NN} } = 95\,{\rm{TeV}} $ showed good agreements with the extrapolation from the previous measurements and model predictions. (2) The signal sizes of SD were compared between data and MC using 7 years of TA SD data in the energy range from 1018.8 eV to 1019.2 eV. It was found that the data/MC ratios exceed unity and the deviation becomes larger when the expected fraction of muon signal, defined as muon purity P, is higher. The results support the muon excess (with respect to MC) problem reported by the previous observations.

2019 ◽  
Vol 208 ◽  
pp. 08004
Author(s):  
R. Takeishi

The origin of ultra-high energy cosmic rays (UHECRs) has been a long-standing mystery. One of the uncertainties in UHECR observation derives from the hadronic interaction model used for air shower Monte-Carlo (MC) simulations. The number of muons observed at ground level from UHECR induced air showers is expected to depend upon the composition of primary cosmic rays. The MC prediction also depends on hadronic interaction models. One may test the hadronic interaction models by comparing the measured number of muons with the MC prediction. The Telescope Array (TA) is the largest experiment in the northern hemisphere observing UHECR in Utah, USA. It aims to reveal the origin of UHECR by studying the energy spectrum, mass composition and anisotropy of cosmic rays by utilizing an array of surface detectors (SDs) and fluorescence detectors. We studied muon densities in the UHE extensive air showers by analyzing the signal of TA SD stations for highly inclined showers which should have high muon purity. A high muon purity condition is imposed that requires the geometry of the shower and relative position of the given station and implies that muons dominate the signal. On condition that the muons contribute about 65% of the total signal, the number of particles from air showers is typically 1.88 ± 0.08(stat:) ± 0.42(syst:) times larger than the MC prediction with the QGSJET II-03 model for protons. The same feature was also obtained for other hadronic models, such as QGSJET II-04.


2019 ◽  
Vol 28 (11) ◽  
pp. 1950145
Author(s):  
Saeed Doostmohammadi ◽  
Seyed Jaliledin Fatemi ◽  
Maryam Nikpour

Unusual and multicore extensive air showers are detected in some experiments. Study of these kinds of showers is an important issue in nuclear collisions at high energies and need to be interpreted by hadronic interaction models. In the work, taking into account results Sleptsova et al. of which emphasized shower size variations at energies above [Formula: see text][Formula: see text]eV, and also by using of the auger experimental data, some characteristics of multicore events are investigated. Intense nuclear variations are seen in energy range of [Formula: see text]–[Formula: see text][Formula: see text]eV, and nuclear distinctive properties of multicore showers relative to normal showers are shown.


2019 ◽  
Vol 210 ◽  
pp. 02012
Author(s):  
R. Takeishi

One of the uncertainties in ultrahigh energy cosmic ray (UHECR) observation derives from the hadronic interaction model used for air shower Monte-Carlo (MC) simulations. One may test the hadronic interaction models by comparing the measured number of muons observed at the ground from UHECR induced air showers with the MC prediction. The Telescope Array (TA) is the largest experiment in the northern hemisphere observing UHECR in Utah, USA. It aims to reveal the origin of UHECRs by studying the energy spectrum, mass composition and anisotropy of cosmic rays by utilizing an array of surface detectors (SDs) and fluorescence detectors. We studied muon densities in the UHE extensive air showers by analyzing the signal of TA SD stations for highly inclined showers. On condition that the muons contribute about 65% of the total signal, the number of particles from air showers is typically 1.88 ± 0.08 (stat.) ± 0.42 (syst.) times larger than the MC prediction with the QGSJET II-03 model for proton-induced showers. The same feature was also obtained for other hadronic interaction models, such as QGSJET II-04.


2019 ◽  
Vol 210 ◽  
pp. 02004 ◽  
Author(s):  
H.P. Dembinski ◽  
J.C. Arteaga-Velázquez ◽  
L. Cazon ◽  
R. Conceição ◽  
J. Gonzalez ◽  
...  

We present a summary of recent tests and measurements of hadronic interaction properties with air showers. This report has a special focus on muon density measurements. Several experiments reported deviations between simulated and recorded muon densities in extensive air showers, while others reported no discrepancies. We combine data from eight leading air shower experiments to cover shower energies from PeV to tens of EeV. Data are combined using the z-scale, a unified reference scale based on simulated air showers. Energy-scales of experiments are cross-calibrated. Above 10 PeV, we find a muon deficit in simulated air showers for each of the six considered hadronic interaction models. The deficit is increasing with shower energy. For the models EPOS-LHC and QGSJet-II.04, the slope is found significant at 8 sigma.


2019 ◽  
Vol 208 ◽  
pp. 11002 ◽  
Author(s):  
Felix Riehn ◽  
Ralph Engel ◽  
Anatoli Fedynitch ◽  
Thomas K. Gaisser ◽  
Todor Stanev

One of the applications of the hadronic interaction model Sibyll is the simulation of extensive air showers of ultra-high energy cosmic rays. In recent years it has become more and more clear that simulations do not agree with measurements when it comes to observables related to muons in air showers. We discuss the processes in Sibyll that are directly related to muon production in extensive air showers and describe their relation to shower observables.


1968 ◽  
Vol 46 (10) ◽  
pp. S92-S94 ◽  
Author(s):  
N. M. Nesterova

The experimental data concerning the fluctuations of Cerenkov flashes in the atmosphere are analyzed to investigate the composition of primary particles for the energy range 1014–1016 eV.


2005 ◽  
Vol 20 (29) ◽  
pp. 7016-7019 ◽  
Author(s):  
A. MISHEV ◽  
S. MAVRODIEV ◽  
J. STAMENOV

We present a new method for ground based gamma ray astronomy based only on atmospheric Cherenkov light flux analysis. The Cherenkov light flux densities in extensive air showers initiated by different primaries are simulated in the energy range 100 GeV – 100 PeV for different primaries using the CORSIKA 6.003 code at (536 g/cm2). An approximation of lateral distribution of Cherenkov light flux densities in EAS is obtained using a nonlinear fit such as Breit-Wigner. The simulated and reconstructed events are compared and the accuracy in energy and primary mass reconstruction are obtained.


2015 ◽  
Vol 754-755 ◽  
pp. 807-811
Author(s):  
A.A. Al-Rubaiee ◽  
Uda Hashim ◽  
Mohd Khairuddin Md Arshad ◽  
A. Rahim Ruslinda ◽  
R.M. Ayub ◽  
...  

The simulation of Cherenkov light Lateral distribution function (LDF) in Extensive Air Showers (EAS) initiated primary particles such as primary calcium, argon, proton iron nuclei, neutron and nitrogen have been performed using CORSIKA program for conditions and configurations of Tunka133 EAS Cherenkov array. The simulation was fulfilled at the high energy range 1014-1016eV for four different zenith angles 0o, 10o, 15oand 30o. The results of the simulated Cherenkov light LDF are compared with the measurements of Tunka133 EAS array for the same particles and energy range mentioned above. This comparison may give the good ability to reconstruct the energy spectrum and mass composition of the primary cosmic ray particles in EAS. The main feature of the given approach consists of the possibility to make a library of Cherenkov light LDF samples which could be utilized for analysis of real events which can be detected with different EAS arrays and reconstruction of the primary cosmic rays energy spectrum and mass composition of EAS particles.


Sign in / Sign up

Export Citation Format

Share Document