scholarly journals Entanglement entropy in strongly correlated systems with confinement/deconfinement phase transition and anisotropy

2019 ◽  
Vol 222 ◽  
pp. 03024 ◽  
Author(s):  
Pavel Slepov

Five-dimensional anisotropic gravity with nontrivial dilaton field and two Maxwell fields is chosen for the holographic model, which allows to reproduce the multiplicity dependence on energy obtained from heavy-ions collisions [1, 2]. Holographic entanglement entropy and its density are calculated for three-dimensional subsystems in this anisotropic background. These elongated subsystems have arbitrary spatial orientation in relation to the line of heavy-ions collisions. The divergences of holographic entanglement entropy are discussed. The entanglement entropy density has sharp spikes around the critical temperature for given chemical potential and anisotropy.

2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Weiping Yao ◽  
Qiong Yang ◽  
Xiaobao Liu ◽  
Jiliang Jing

AbstractWe explore the behaviors of the holographic entanglement entropy (HEE) in holographic superconductor models with logarithmic nonlinear electrodynamics (LNE) both in AdS soliton and in AdS black hole backgrounds. We observe that the slope of the HEE at the phase transition point behaves discontinuously for different LNE parameters b and geometry parameters $$\ell $$ ℓ , which may be a quite general feature for the second order phase transition. Moreover, at the critical point, the stronger nonlinearity of the LNE gives rise to the smaller HEE in metal/superconductor while leaves the HEE in insulator/superconductor model as is. Interestingly, the behavior of the HEE also implies a “confinement/deconfinement” phase transition in the insulator/superconductor model, and the critical width of the phase transition depends on the chemical potential and the strength of the LNE.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Xun Chen ◽  
Lin Zhang ◽  
Danning Li ◽  
Defu Hou ◽  
Mei Huang

Abstract We investigate rotating effect on deconfinement phase transition in an Einstein-Maxwell-Dilaton (EMD) model in bottom-up holographic QCD approach. By constructing a rotating black hole, which is supposed to be dual to rotating strongly coupled nuclear matter, we investigate the thermodynamic quantities, including entropy density, pressure, energy density, trace anomaly, sound speed and specific heat for both pure gluon system and two-flavor system under rotation. It is shown that those thermodynamic quantities would be enhanced by large angular velocity. Also, we extract the information of phase transition from those thermodynamic quantities, as well as the order parameter of deconfinement phase transition, i.e. the loop operators. It is shown that, in the T − ω plane, for two-flavor case with small chemical potential, the phase transition is always crossover. The transition temperature decreases slowly with angular velocity and chemical potential. For pure gluon system with zero chemical potential, the phase transition is always first order, while at finite chemical potential a critical end point (CEP) will present in the T − ω plane.


2018 ◽  
Vol 33 (03) ◽  
pp. 1850008
Author(s):  
Sen Hu ◽  
Guozhen Wu

We consider backreacted [Formula: see text] coupled with [Formula: see text] massive flavors introduced by D7 branes. The backreacted geometry is in the Veneziano limit with fixed [Formula: see text]. By dividing one of the directions into a line segment with length l, we get two subspaces. Then we calculate the entanglement entropy between them. With the method of [I. R. Klebanov, D. Kutasov and A. Murugan, Nucl. Phys. B 796, 274 (2008)], we are able to find the cut-off independent part of the entanglement entropy and finally find that this geometry shows no confinement/deconfinement phase transition at zero temperature from the holographic entanglement entropy point of view similar to the case in pure [Formula: see text].


2018 ◽  
Vol 33 (36) ◽  
pp. 1850226 ◽  
Author(s):  
Chanyong Park

We investigate the holographic entanglement entropy of deformed conformal field theories which are dual to a cutoff AdS space. The holographic entanglement entropy evaluated on a three-dimensional Poincaré AdS space with a finite cutoff can be reinterpreted as that of the dual field theory deformed by either a boost or [Formula: see text] deformation. For the boost case, we show that, although it trivially acts on the underlying theory, it nontrivially affects the entanglement entropy due to the length contraction. For a three-dimensional AdS, we show that the effect of the boost transformation can be reinterpreted as the rescaling of the energy scale, similar to the [Formula: see text] deformation. Under the boost and [Formula: see text] deformation, the [Formula: see text]-function of the entanglement entropy exactly shows the features expected by the Zamolodchikov’s [Formula: see text]-theorem. The deformed theory is always stationary at a UV fixed point and monotonically flows to another CFT in the IR fixed point. We also show that the holographic entanglement entropy in a Poincaré cutoff AdS space can reproduce the exact same result of the [Formula: see text] deformed theory on a two-dimensional sphere.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hong Zhe Chen ◽  
Zachary Fisher ◽  
Juan Hernandez ◽  
Robert C. Myers ◽  
Shan-Ming Ruan

Abstract We study the doubly holographic model of [1] in the situation where a black hole in two-dimensional JT gravity theory is coupled to an auxiliary bath system at arbitrary finite temperature. Depending on the initial temperature of the black hole relative to the bath temperature, the black hole can lose mass by emitting Hawking radiation, stay in equilibrium with the bath or gain mass by absorbing thermal radiation from the bath. In all of these scenarios, a unitary Page curve is obtained by applying the usual prescription for holographic entanglement entropy and identifying the quantum extremal surface for the generalized entropy, using both analytical and numeric calculations. As the application of the entanglement wedge reconstruction, we further investigate the reconstruction of the black hole interior from a subsystem containing the Hawking radiation. We examine the roles of the Hawking radiation and also the purification of the thermal bath in this reconstruction.


2018 ◽  
Vol 33 (07) ◽  
pp. 1850033
Author(s):  
Sen Hu ◽  
Guozhen Wu

We consider backreacted [Formula: see text] coupled with [Formula: see text] massless flavors introduced by D7-branes at nonzero temperature. The backreacted geometry is in the Veneziano limit. The temperature of this system is related to the event horizon at [Formula: see text]. Dividing one of the spatial directions into a line segment with length [Formula: see text], we will calculate the holographic entanglement entropy (HEE) between the two subspaces. We study the behavior near the event horizon, and finally find that there exists confinement/deconfinement phase transition phenomenon near the horizon since the difference between the entanglement entropy of the connected minimal surface and the disconnected one changes sign.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Giorgos Anastasiou ◽  
Javier Moreno ◽  
Rodrigo Olea ◽  
David Rivera-Betancour

Abstract We study the holographic entanglement entropy of deformed entangling regions in three-dimensional CFTs dual to Einstein-AdS gravity, using a renormalization scheme based on the addition of extrinsic counterterms. In this prescription, when even- dimensional manifolds are considered, the universal contribution to the entanglement entropy is identified as the renormalized volume of the Ryu-Takayanagi hypersurface, which is written as the sum of a topological and a curvature term. It is shown that the change in the renormalized entanglement entropy due to the deformation of the entangling surface is encoded purely in the curvature contribution. In turn, as the topological part is given by the Euler characteristic of the Ryu-Takayanagi surface, it remains shape independent. Exploiting the covariant character of the extrinsic counterterms, we apply the renormalization scheme for the case of deformed entangling regions in AdS4/CFT3, recovering the results found in the literature. Finally, we provide a derivation of the relation between renormalized entanglement entropy and Willmore energy. The presence of a lower bound of the latter makes manifest the relation between the AdS curvature of the Ryu-Takayanagi surface and the strong subadditivity property.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Luis Apolo ◽  
Hongliang Jiang ◽  
Wei Song ◽  
Yuan Zhong

Abstract We propose a holographic entanglement entropy prescription for general states and regions in two models of holography beyond AdS/CFT known as flat3/BMSFT and (W)AdS3/WCFT. Flat3/BMSFT is a candidate of holography for asymptotically flat three- dimensional spacetimes, while (W)AdS3/WCFT is relevant in the study of black holes in the real world. In particular, the boundary theories are examples of quantum field theories that feature an infinite dimensional symmetry group but break Lorentz invariance. Our holographic entanglement entropy proposal is given by the area of a swing surface that consists of ropes, which are null geodesics emanating from the entangling surface at the boundary, and a bench, which is a spacelike geodesic connecting the ropes. The proposal is supported by an extension of the Lewkowycz-Maldacena argument, reproduces previous results based on the Rindler method, and satisfies the first law of entanglement entropy.


Sign in / Sign up

Export Citation Format

Share Document