scholarly journals Fusion probability of massive nuclei in reactions leading to heavy composite nuclear systems

2019 ◽  
Vol 223 ◽  
pp. 01052
Author(s):  
Roman Sagaidak

Reactions between massive nuclei show a considerable reduction in fusion-evaporation cross-sections at the Coulomb barrier according to the comparison of experimental values with those calculated by barrier passing (BP) and statistical model (SM) approximations. Reduced fusion cross-sections corresponding to fusion probability PCN<1 are accompanied by a high probability of deep-inelastic and quasi-fission processes arising on the way to fusion. At the same time, the excitation functions for evaporation residues (ERs) obtained in very mass-asymmetric projectile-target combinations are well described in the framework of the BP model (assuming PCN=1) and SM approximations. In the framework of SM, the survivability of produced heavy nuclei can be described with the use of adjusted macroscopic fission barriers. Fusion suppression appears in less asymmetric combinations, for which PCN values can be estimated using survivability obtained for very asymmetric ones leading to the same CN. An attempt was made to systemize the PCN data derived from different projectile-target combinations leading to ERs in the range from Pb to the most heavies, which are compared withPCN values obtained in fission experiments.

2010 ◽  
Vol 19 (04) ◽  
pp. 514-520 ◽  
Author(s):  
FEDIR IVANYUK ◽  
KRZYSZTOF POMORSKI

We have calculated the liquid drop fission barriers of medium and heavy nuclei within the Lublin-Strasbourg-Drop model. Exploiting in addition the topographical theorem by Myers and Światecki we propose a simple but quite accurate approximation of the fission barrier heights. When comparing the r.m.s. deviation of approximated versus experimental values of fission barrier heights for known nuclei with Z > 70 a value 1.1 MeV is obtained which is comparable with the experimental uncertainties. The Strutinsky optimal shape method is generalized to the left-right asymmetric shapes of nuclei in order to investigate the influence of this degree of freedom on the barrier heights.


1985 ◽  
Vol 441 (2) ◽  
pp. 316-343 ◽  
Author(s):  
C.C. Sahm ◽  
H.G. Clerc ◽  
K.-H. Schmidt ◽  
W. Reisdorf ◽  
P. Armbruster ◽  
...  

2009 ◽  
Vol 18 (04) ◽  
pp. 869-872 ◽  
Author(s):  
A. SOBICZEWSKI ◽  
M. KOWAL

The accuracy of the description of the experimental heights of the fission barriers of heavy nuclei is studied. Four theoretical descriptions are considered. It is found that the average discrepancy between theoretical and experimental values for 18 even-even nuclei is about 0.8 MeV, while the largest discrepancy is about 2 MeV.


1997 ◽  
Vol 626 (3) ◽  
pp. 857-870 ◽  
Author(s):  
A.N Andreyev ◽  
D.D Bogdanov ◽  
V.I Chepigin ◽  
A.P Kabachenko ◽  
O.N Malyshev ◽  
...  

2018 ◽  
Vol 182 ◽  
pp. 02054 ◽  
Author(s):  
Sigurd Hofmann

Professor Walter Greiner, our mentor, colleague, and friend, passed away in the age of eighty. During his lifetime, the search for elements beyond uranium started and elements up to the so far heaviest one with atomic number 118 were discovered. In this talk I will present a short history from early searches for ‘trans-uraniums’ up to the production and safe identification of shell-stabilized ‘Super-Heavy Nuclei’ (SHN). The nuclear shell model reveals that these nuclei should be located in a region with closed shells for the protons at Z = 114, 120 or 126 and for the neutrons at N = 184. The outstanding aim of experimental investigations is the exploration of this region of spherical SHN. Systematic studies of heavy ion reactions for the synthesis of SHN revealed production cross-sections which reached values down to one picobarn and even below for the heaviest species. The systematics of measured cross-sections can be understood only on the basis of relatively high fission barriers as predicted for nuclei in and around the island of SHN. A key role in answering some of the open questions plays the synthesis of isotopes of element 120. Attempts aiming for synthesizing this element at the velocity filter SHIP will be reported.


The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


2020 ◽  
Vol 56 (9) ◽  
Author(s):  
Gábor Balassa ◽  
György Wolf

Abstract In this work, we extended our statistical model with charmed and bottomed hadrons, and fit the quark creational probabilities for the heavy quarks, using low energy inclusive charmonium and bottomonium data. With the finalized fit for all the relevant types of quarks (up, down, strange, charm, bottom) at the energy range from a few GeV up to a few tens of GeV’s, the model is now considered complete. Some examples are also given for proton–proton, pion–proton, and proton–antiproton collisions with charmonium, bottomonium, and open charm hadrons in the final state.


Science ◽  
2021 ◽  
Vol 371 (6526) ◽  
pp. 260-264 ◽  
Author(s):  
Junki Tanaka ◽  
Zaihong Yang ◽  
Stefan Typel ◽  
Satoshi Adachi ◽  
Shiwei Bai ◽  
...  

The surface of neutron-rich heavy nuclei, with a neutron skin created by excess neutrons, provides an important terrestrial model system to study dilute neutron-rich matter. By using quasi-free α cluster–knockout reactions, we obtained direct experimental evidence for the formation of α clusters at the surface of neutron-rich tin isotopes. The observed monotonous decrease of the reaction cross sections with increasing mass number, in excellent agreement with the theoretical prediction, implies a tight interplay between α-cluster formation and the neutron skin. This result, in turn, calls for a revision of the correlation between the neutron-skin thickness and the density dependence of the symmetry energy, which is essential for understanding neutron stars. Our result also provides a natural explanation for the origin of α particles in α decay.


1975 ◽  
Vol 252 (1) ◽  
pp. 187-207 ◽  
Author(s):  
B. Tamain ◽  
C. Ngô ◽  
J. Péter ◽  
F. Hanappe
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document