scholarly journals Asymptotic Giant Branch Stars and presolar grains

2020 ◽  
Vol 227 ◽  
pp. 01002
Author(s):  
Maurizio Busso ◽  
Sara Palmerini ◽  
Diego Vescovi

Starting from the recognition that radioactive isotopes were present alive in the Early Solar System, inducing composition anomalies from their decay, and through the discovery that other important anomalies affected also stable species, we shall discuss how the carriers of these abundance peculiarities were identified in very refractory pre-solar dust grains, formed in circumstellar environments. We shall outline how groups of such grains and subsequently in-dividual single crystals of C-rich or O-rich materials (like, e.g., SiC and Al2O3) could be analyzed, providing a new tool to verify the composition of stellar winds. This is so especially for AGB stars, which are the primary factories of dust in the Galaxy. For this reason, pristine meteorites open a crucial window on the details of nucleosynthesis processes occurring in such evolved red giants, for both intermediate-mass elements and rare heavy nuclei affected by slow neutron captures (the s-process).

Science ◽  
2014 ◽  
Vol 345 (6197) ◽  
pp. 650-653 ◽  
Author(s):  
Maria Lugaro ◽  
Alexander Heger ◽  
Dean Osrin ◽  
Stephane Goriely ◽  
Kai Zuber ◽  
...  

Among the short-lived radioactive nuclei inferred to be present in the early solar system via meteoritic analyses, there are several heavier than iron whose stellar origin has been poorly understood. In particular, the abundances inferred for 182Hf (half-life = 8.9 million years) and 129I (half-life = 15.7 million years) are in disagreement with each other if both nuclei are produced by the rapid neutron-capture process. Here, we demonstrate that contrary to previous assumption, the slow neutron-capture process in asymptotic giant branch stars produces 182Hf. This has allowed us to date the last rapid and slow neutron-capture events that contaminated the solar system material at ∼100 million years and ∼30 million years, respectively, before the formation of the Sun.


Author(s):  
Jie Yu ◽  
Saskia Hekker ◽  
Timothy R Bedding ◽  
Dennis Stello ◽  
Daniel Huber ◽  
...  

Abstract Mass loss by red giants is an important process to understand the final stages of stellar evolution and the chemical enrichment of the interstellar medium. Mass-loss rates are thought to be controlled by pulsation-enhanced dust-driven outflows. Here we investigate the relationships between mass loss, pulsations, and radiation, using 3213 luminous Kepler red giants and 135000 ASAS–SN semiregulars and Miras. Mass-loss rates are traced by infrared colours using 2MASS and WISE and by observed-to-model WISE fluxes, and are also estimated using dust mass-loss rates from literature assuming a typical gas-to-dust mass ratio of 400. To specify the pulsations, we extract the period and height of the highest peak in the power spectrum of oscillation. Absolute magnitudes are obtained from the 2MASS Ks band and the Gaia DR2 parallaxes. Our results follow. (i) Substantial mass loss sets in at pulsation periods above ∼60 and ∼100 days, corresponding to Asymptotic-Giant-Branch stars at the base of the period-luminosity sequences C′ and C. (ii) The mass-loss rate starts to rapidly increase in semiregulars for which the luminosity is just above the red-giant-branch tip and gradually plateaus to a level similar to that of Miras. (iii) The mass-loss rates in Miras do not depend on luminosity, consistent with pulsation-enhanced dust-driven winds. (iv) The accumulated mass loss on the Red Giant Branch consistent with asteroseismic predictions reduces the masses of red-clump stars by 6.3%, less than the typical uncertainty on their asteroseismic masses. Thus mass loss is currently not a limitation of stellar age estimates for galactic archaeology studies.


1991 ◽  
Vol 148 ◽  
pp. 363-364
Author(s):  
Neill Reid ◽  
J. R. Mould

Since the pioneering objective prism surveys by Westerlund (1960) and Blanco et al. (1980), the Magellanic Clouds have proved a fruitful site for exploring the evolution of AGB stars. We have used photometric techniques to extend the prism C-star surveys to M- and S-type AGB stars, constructing luminosity functions and obtaining spectra of individual stars for comparison with theoretical predictions. We have concentrated on the Large Magellanic Cloud (LMC), but we have recently obtained observations of luminous red giants in a region of the Small Magellanic Cloud (SMC). In this paper we compare the results from these studies of the two satellite systems.


2009 ◽  
Vol 5 (S268) ◽  
pp. 301-309
Author(s):  
Verne V. Smith

AbstractConnections between observations of the lithium abundance in various types of red giants and stellar evolution are discussed here. The emphasis is on three main topics; 1) the depletion of Li as stars ascend the red giant branch for the first time, 2) the synthesis of 7Li in luminous and massive asymptotic giant branch stars via the mechanism of hot-bottom burning, and 3) the possible multiple sources of excess Li abundances found in a tiny fraction of various types of G and K giants.


2012 ◽  
Vol 8 (S287) ◽  
pp. 245-249
Author(s):  
W. Cotton ◽  
G. Perrin ◽  
R. Millan-Gabet ◽  
O. Delaa ◽  
B. Mennesson

AbstractAsymptotic Giant Branch Stars (AGB) are evolved, mass losing red giants with tenuous molecular envelopes which have been the subject of much recent study using infrared and radio interferometers. In oxygen rich stars, radio SiO masers form in the outer regions of the molecular envelopes and are powerful diagnostics of the extent of these envelopes. Spectroscopically resolved infrared interferometry helps constrain the extent of various species in the molecular layer. We made VLBA 7 mm SiO maser, Keck Interferometer near IR and VLTI/MIDI mid IR high resolution observations of the stars U Ari, W Cnc, RX Tau, RT Aql, S Ser and V Mon. This paper presents evidence that the SiO is depleted from the gas phase and speculate that it is frozen onto Al2O3 grains and that radiation pressure on these grains help drive the outflow.


2019 ◽  
Vol 492 (3) ◽  
pp. 3708-3727 ◽  
Author(s):  
J Shejeelammal ◽  
Aruna Goswami ◽  
Partha Pratim Goswami ◽  
Rajeev Singh Rathour ◽  
Thomas Masseron

ABSTRACT Barium stars are one of the important probes to understand the origin and evolution of slow neutron-capture process elements in the Galaxy. These are extrinsic stars, where the observed s-process element abundances are believed to have an origin in the now invisible companions that produced these elements at their asymptotic giant branch (AGB) phase of evolution. We have attempted to understand the s-process nucleosynthesis, as well as the physical properties of the companion stars through a detailed comparison of observed elemental abundances of 10 barium stars with the predictions from AGB nucleosynthesis models, FRUITY. For these stars, we have presented estimates of abundances of several elements, C, N, O, Na, Al, α-elements, Fe-peak elements, and neutron-capture elements Rb, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, and Eu. The abundance estimates are based on high resolution spectral analysis. Observations of Rb in four of these stars have allowed us to put a limit to the mass of the companion AGB stars. Our analysis clearly shows that the former companions responsible for the surface abundance peculiarities of these stars are low-mass AGB stars. Kinematic analysis has shown the stars to be members of Galactic disc population.


2018 ◽  
Vol 14 (S343) ◽  
pp. 510-511
Author(s):  
G. Tautvaišienė ◽  
C. Viscasillas Vázquez ◽  
V. Bagdonas ◽  
R. Smiljanic ◽  
A. Drazdauskas ◽  
...  

AbstractAsymptotic giant branch stars play an important role in enriching galaxies by s-process elements. Recent studies have shown that their role in producing s-process elements in the Galactic disc was underestimated and should be reconsidered. Based on high-resolution spectra we have determined abundances of neutron-capture elements in a sample of 310 stars located in the field and open clusters and investigated elemental enrichment patterns according to their age and mean galactocentric distances.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 470-471
Author(s):  
B. A. Sargent ◽  
S. Srinivasan ◽  
A. Speck ◽  
K. Volk ◽  
F. Kemper ◽  
...  

AbstractWe analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of red supergiant (RSG) and oxygen-rich asymptotic giant branch (AGB) stars in the Large Magellanic Cloud and Small Magellanic Cloud galaxies and in various Milky Way globular clusters. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper), the Spitzer program SMC-Spec (PI: G. Sloan), and other archival Spitzer-IRS programs. The broad 10 and 20 micron emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We investigate differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars and assess effects of varying metallicity (LMC versus SMC versus Milky Way globular cluster) and other properties (mass-loss rate, luminosity, etc.) on the dust originating from these stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.


2022 ◽  
Vol 924 (1) ◽  
pp. 10
Author(s):  
Thomas C. L. Trueman ◽  
Benoit Côté ◽  
Andrés Yagüe López ◽  
Jacqueline den Hartogh ◽  
Marco Pignatari ◽  
...  

Abstract Analysis of inclusions in primitive meteorites reveals that several short-lived radionuclides (SLRs) with half-lives of 0.1–100 Myr existed in the early solar system (ESS). We investigate the ESS origin of 107Pd, 135Cs, and 182Hf, which are produced by slow neutron captures (the s-process) in asymptotic giant branch (AGB) stars. We modeled the Galactic abundances of these SLRs using the OMEGA+ galactic chemical evolution (GCE) code and two sets of mass- and metallicity-dependent AGB nucleosynthesis yields (Monash and FRUITY). Depending on the ratio of the mean-life τ of the SLR to the average length of time between the formations of AGB progenitors γ, we calculate timescales relevant for the birth of the Sun. If τ/γ ≳ 2, we predict self-consistent isolation times between 9 and 26 Myr by decaying the GCE predicted 107Pd/108Pd, 135Cs/133Cs, and 182Hf/180Hf ratios to their respective ESS ratios. The predicted 107Pd/182Hf ratio indicates that our GCE models are missing 9%–73% of 107Pd and 108Pd in the ESS. This missing component may have come from AGB stars of higher metallicity than those that contributed to the ESS in our GCE code. If τ/γ ≲ 0.3, we calculate instead the time (T LE) from the last nucleosynthesis event that added the SLRs into the presolar matter to the formation of the oldest solids in the ESS. For the 2 M ⊙, Z = 0.01 Monash model we find a self-consistent solution of T LE = 25.5 Myr.


2018 ◽  
Vol 14 (S343) ◽  
pp. 474-475
Author(s):  
Rodolfo Montez ◽  
Sofia Ramstedt ◽  
Joel H. Kastner ◽  
Wouter Vlemmings

AbstractA comprehensive study of UV emission from asymptotic giant branch (AGB) stars with the Galaxy Evolution Explorer (GALEX) revealed that out of the 316 observed AGB stars, 57% were detected in the near-UV (NUV) bandpass and 12% were detected in the far-UV (FUV) bandpass (Montez et al. 2017). A cross-match between our sample and Gaia DR2 results in parallax estimates for 90% of the sample of AGB stars, compared to only 30% from Hipparcos. This increase allowed us to further probe trends and conclusions of our initial study. Specifically, that the detection of UV emission from AGB stars is subject to proximity and favorable lines of sight in our Galaxy. These improved results support the notion that some of the GALEX-detected UV emission is intrinsic to AGB stars, likely due to a combination of photospheric and chromospheric emission.


Sign in / Sign up

Export Citation Format

Share Document