scholarly journals Spallation reaction study for long-lived fission products in nuclear waste

2020 ◽  
Vol 239 ◽  
pp. 06003
Author(s):  
He Wang ◽  
Hideaki Otsu ◽  
Hiroyoshi Sakurai ◽  
DeukSoon Ahn ◽  
Masayuki Aikawa ◽  
...  

Spallation reaction for the long-lived fission product 107Pd has been studied for the purpose of nuclear waste transmutation. The isotopic-distribution cross sections on both proton and deuteron were obtained at 118 MeV/nucleon in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. A large cross-section difference was found between the proton and deuteron results for the light-mass products. The data were compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intranuclear cascade and evaporation processes. In addition, the potential of spallation reaction for transmutation of 107Pd is discussed.

2020 ◽  
Vol 239 ◽  
pp. 01037
Author(s):  
X. Sun ◽  
H. Wang ◽  
H. Otsu ◽  
H. Sakurai ◽  
D.S. Ahn ◽  
...  

The isotopic production cross sections for the reactions of 136Xe induced by proton, deuteron and carbon at 168 MeV/u were obtained by using the inverse kinematics technique at RIKEN Radioactive Isotope Beam Factory. The target dependence of the cross sections was investigated systematically. It was found that for the light-mass products, the cross sections on carbon are larger than those on deuteron and proton. The measured cross sections on proton were compared with the previous data at higher reaction energies to study the energy dependence. The experimental results were compared with the theoretical calculations including both the intranuclear cascade and evaporation processes using PHITS and with the EPAX and SPACS empirical parameterizations.


2006 ◽  
Vol 21 (38) ◽  
pp. 2881-2892 ◽  
Author(s):  
İSKENDER DEMİRKOL

In this study, the fragmentation production cross-sections of heavy residual nuclides in the reactions 238 U (1 A GeV ) + p and p (1.2 GeV ) + 232 Th were calculated and the production of more than 370 different isotopes for this incident reactions was presented. The calculations were made by using the Cascade-Exciton Model including pre-equilibrium effect, the Intranuclear Cascade Model, the empirical and the semi-empirical parametrization. The results of the cross-sections obtained were compared with available experimental data and examined the relation between each other. It is seen that the precision of this models to estimate residue production cross-sections is still far from the performance required for technical applications and this incident model should be improved to obtain a deeper understanding of the reaction mechanisms involved in the production of isotopes.


2017 ◽  
Vol 146 ◽  
pp. 09022
Author(s):  
He Wang ◽  
Hideaki Otsu ◽  
Hiroyoshi Sakurai ◽  
DeukSoon Ahn ◽  
Masayuki Aikawa ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 431
Author(s):  
Giorgio Turri ◽  
Scott Webster ◽  
Michael Bass ◽  
Alessandra Toncelli

Spectroscopic properties of neodymium-doped yttrium lithium fluoride were measured at different temperatures from 35 K to 350 K in specimens with 1 at% Nd3+ concentration. The absorption spectrum was measured at room temperature from 400 to 900 nm. The decay dynamics of the 4F3/2 multiplet was investigated by measuring the fluorescence lifetime as a function of the sample temperature, and the radiative decay time was derived by extrapolation to 0 K. The stimulated-emission cross-sections of the transitions from the 4F3/2 to the 4I9/2, 4I11/2, and 4I13/2 levels were obtained from the fluorescence spectrum measured at different temperatures, using the Aull–Jenssen technique. The results show consistency with most results previously published at room temperature, extending them over a broader range of temperatures. A semi-empirical formula for the magnitude of the stimulated-emission cross-section as a function of temperature in the 250 K to 350 K temperature range, is presented for the most intense transitions to the 4I11/2 and 4I13/2 levels.


Sign in / Sign up

Export Citation Format

Share Document