FRAGMENTATION PRODUCTION CROSS-SECTIONS IN RELATIVISTIC COLLISIONS

2006 ◽  
Vol 21 (38) ◽  
pp. 2881-2892 ◽  
Author(s):  
İSKENDER DEMİRKOL

In this study, the fragmentation production cross-sections of heavy residual nuclides in the reactions 238 U (1 A GeV ) + p and p (1.2 GeV ) + 232 Th were calculated and the production of more than 370 different isotopes for this incident reactions was presented. The calculations were made by using the Cascade-Exciton Model including pre-equilibrium effect, the Intranuclear Cascade Model, the empirical and the semi-empirical parametrization. The results of the cross-sections obtained were compared with available experimental data and examined the relation between each other. It is seen that the precision of this models to estimate residue production cross-sections is still far from the performance required for technical applications and this incident model should be improved to obtain a deeper understanding of the reaction mechanisms involved in the production of isotopes.

2020 ◽  
Vol 239 ◽  
pp. 01037
Author(s):  
X. Sun ◽  
H. Wang ◽  
H. Otsu ◽  
H. Sakurai ◽  
D.S. Ahn ◽  
...  

The isotopic production cross sections for the reactions of 136Xe induced by proton, deuteron and carbon at 168 MeV/u were obtained by using the inverse kinematics technique at RIKEN Radioactive Isotope Beam Factory. The target dependence of the cross sections was investigated systematically. It was found that for the light-mass products, the cross sections on carbon are larger than those on deuteron and proton. The measured cross sections on proton were compared with the previous data at higher reaction energies to study the energy dependence. The experimental results were compared with the theoretical calculations including both the intranuclear cascade and evaporation processes using PHITS and with the EPAX and SPACS empirical parameterizations.


Author(s):  
Susshma Nagarajan ◽  
Deepa Seetharaman ◽  
Gowrishankar Ramadurai

Synthesizing nuclei through reactions that produce a reasonable yield is important for the experimental study of neutron-rich nuclei. In this study, the cross-section values of 184Ta and 186Ta nuclei in various experiments were reviewed and analysed. The experimental data of (n, p), (p, x) and (n, α) reactions were compared to identify the best reaction to produce these nuclei for further study. Our study shows that (n, p) reactions on natural Tungsten targets are the most feasible reactions with a good yield of the neutron-rich Tantalum isotopes. New reactions have been proposed for the effective synthesis of 184Ta and 186Ta using tritium beams on Hafnium targets. The cross-section values of the proposed reactions were calculated by PACE4 software simulations.


2016 ◽  
Vol 104 (8) ◽  
Author(s):  
Junhua Luo ◽  
Chunlei Wu ◽  
Li Jiang ◽  
Long He

Abstract:The cross sections for (n,x) reactions on samarium isotopes were measured at (d-T) neutron energies of 13.5 and 14.8 MeV with the activation technique. Samples were activated along with Nb and Al monitor foils to determine the incident neutron flux. Theoretical calculations of excitation functions were performed using the nuclear model codes TALYS-1.6 and EMPIRE-3.2 Malta with default parameters, at neutron energies varying from the reaction threshold to 20 MeV. The results were discussed and compared with experimental data found in the literature. At neutron energies 13.5 and 14.8 MeV, the cross sections of the


2019 ◽  
Vol 34 (19) ◽  
pp. 1950150 ◽  
Author(s):  
Muhammad Ajaz ◽  
Irfan Khan ◽  
M. K. Suleymanov

The transverse momentum distribution of the differential production cross-sections of heavy flavored charm hadrons [Formula: see text], [Formula: see text] in pp collisions at 7 TeV are simulated. Predictions of DPMJETIII.17-1, HIJING1.383 and Sibyll2.3c are compared to the differential cross-section measurements of the LHCb experimental data presented in the region of [Formula: see text] and [Formula: see text], where the pp center of mass frame is used to measure the transverse momentum and rapidity. The models reproduce only some regions of [Formula: see text] and/or bins of [Formula: see text] but none of them predict completely all the [Formula: see text] bins over the entire [Formula: see text] range.


2012 ◽  
Vol 90 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Y. Wu ◽  
Z. An ◽  
Y.M. Duan ◽  
M.T. Liu ◽  
X.P. Ouyang

The absolute K-shell ionization cross sections of K and Lα X-ray production cross sections of I by 10–30 keV electron impact have been measured. The target was prepared by evaporating a thin film of compound KI to a thick pure carbon substrate. The effects of multiple scattering of electrons penetrating the target films, electrons reflected from the thick pure carbon substrates and bremsstrahlung photons produced when incident electrons impacted on the targets were corrected by using the Monte Carlo method. For K K-shell and I L-shell X-ray characteristic peaks, the spectra were fitted using the spectrum-fitting program ALLFIT to extract the Kα and Kβ peak counts more accurately for element K, and Lα peak counts for element I. The experimental results were compared with some theoretical results developed recently and available experimental data from the literature. The experimental data for I L-shell X-ray production cross sections by 10–30 keV electron impact are given here for the first time.


2008 ◽  
Vol 17 (03) ◽  
pp. 567-583 ◽  
Author(s):  
E. TEL ◽  
Ş. OKUDUCU ◽  
M. H. BÖLÜKDEMIR ◽  
G. TANIR

In this study we propose new semi-empirical formulas by modifying the formula of Levkovskii with the new parameters for (n, 2n) and (n, α) reactions cross-sections at 14–15 MeV neutron incident energy. The cross sections have been calculated using the asymmetry parameter depending on empirical formulas for the incoming energies of 14–15 MeV neutrons. The parameters obtained by modifying the original formula of Levkovskii and Konno et al. have been determined by applying the least squares fitting method to the experimental cross sections, and the systematics of the (n, 2n) and (n, α) reactions have been studied. We have also suggested different parameters for the empirical formula to reproduce the cross sections of the (n, 2n) and (n, α) reactions for the neutron incident energy of 14–15 MeV. The modified formulas yielded cross sections representing markedly smaller chi-square (χ2) deviations from experimental values, and values much closer to units as compared with those calculated using Levkovskii's and Konno et al. original formulas. The results obtained have been discussed and compared with the other empirical formulas, and found to be well in agreement when used to correlate the available experimental σ(n, 2n) and σ(n, σ) data of different nuclei.


2020 ◽  
Vol 239 ◽  
pp. 03008
Author(s):  
Hairui Guo ◽  
Yinlu Han ◽  
Tao Ye ◽  
Weili Sun ◽  
Wendi Chen

The nuclear data on n+239,240,242,244Pu reactions for the incident energy up to 200 MeV are consistently calculated and evaluated in order to meet the design requirements of Generation-IV reactors and accelerator driven systems. The optical model, the distorted wave Born approximation theory, the Hauser-Feshbach theory, the fission model, the evaporation model, the exciton model and the intranuclear cascade model are used in the calculation, and new experimental data are taken into account. Our data are compared with experimental data and the evaluated data from JENDL-4/HE and TENDL. In addition, the variation tendency of reaction cross sections related to the target mass numbers is obtained, which is very important for the prediction of nuclear data on neutron-actinides reactions because the experimental data are lacking.


Sign in / Sign up

Export Citation Format

Share Document