scholarly journals MONTE CARLO SIMULATION OF NEUTRONICS START-UP TESTS AT CHINA EXPERIMENTAL FAST REACTOR (CEFR)

2021 ◽  
Vol 247 ◽  
pp. 10008
Author(s):  
Jiwon Choe ◽  
Chirayu Batra ◽  
Vladimir Kriventsev ◽  
Deokjung Lee

China Experimental Fast Reactor (CEFR) is a small size sodium-cooled fast reactor (SFR) with a high neutron leakage core fueled by uranium oxide. The CEFR core with 20 MW(e) power reached its first criticality in July 2010, and several start-up tests were conducted from 2010 to 2011. The China Institute of Atomic Energy (CIAE) proposed to release some of the neutronics start-up test data for the IAEA benchmark within the scope of the IAEA’s coordinated research activities through the coordinated research project (CRP) on “Neutronics Benchmark of CEFR Start-Up Tests”, launched in 2018. This benchmark aims to perform validation and verification of the physical models and the neutronics simulation codes by comparing calculation results against collected experimental data. The six physics start-up tests considered for this CRP include evaluation of the criticality, control rod worth, void reactivity, temperature coefficient, swap reactivity, and foil irradiation. Twenty-nine participating research organizations are performing independent blind calculations during the first phase of the project. As a part of this coordinated research, IAEA performed neutronics calculations using Monte Carlo code SERPENT. Two kinds of 3D core models, homogenous and heterogeneous, were calculated using SERPENT, with ENDF/B-VII.0 continuous energy library. Preliminary results with a reasonably good estimation of criticality, as well as theoretically sound results of other five test cases, are available. The paper will discuss the core modelling assumptions, challenges and key findings of modelling a dense SFR core, preliminary results of the first phase of the CRP, heterogeneity impact analysis between homogenous core models and heterogeneous core models and future work to be performed as a part of this four-year project.

2020 ◽  
Vol 148 ◽  
pp. 107710
Author(s):  
Tuan Quoc Tran ◽  
Jiwon Choe ◽  
Xianan Du ◽  
Hyunsuk Lee ◽  
Deokjung Lee

Author(s):  
Ville Valtavirta ◽  
Antti Rintala ◽  
Unna Lauranto

Abstract The Serpent Monte Carlo code and the Serpent-Ants two step calculation chain are used to model the hot zero power physics tests described in the BEAVRS benchmark. The predicted critical boron concentrations, control rod group worths and isothermal temperature coefficients are compared between Serpent and Serpent-Ants as well as against the experimental measurements. Furthermore, radial power distributions in the unrodded and rodded core configurations are compared between Serpent and Serpent-Ants. In addition to providing results using a best practices calculation chain, the effects of several simplifications or omissions in the group constant generation process on the results are estimated. Both the direct and two-step neutronics solutions provide results close to the measured values. Comparison between the measured data and the direct Serpent Monte Carlo solution yields RMS differences of 12.1 mg/kg, 25.1 × 10-5 and 0.67 × 10-5 K-1 for boron, control rod worths and temperature coefficients respectively. The two-step Serpent-Ants solution reaches a similar level of accuracy with RMS differences of 17.4 mg/kg, 23.6 × 10-5 and 0.29 × 10-5 K-1. The match in the radial power distribution between Serpent and Serpent-Ants was very good with the RMS and maximum for pin power errors being 1.31 % and 4.99 % respectively in the unrodded core and 1.67 %(RMS) and 8.39 % (MAX) in the rodded core.


2020 ◽  
Vol 225 ◽  
pp. 03007
Author(s):  
Tanja Goričanec ◽  
Domen Kotnik ◽  
Žiga Štancar ◽  
Luka Snoj ◽  
Marjan Kromar

An approach for calculating ex-core detector response using Monte Carlo code MCNP was developed. As a first step towards ex-core detector response prediction a detailed MCNP model of the reactor core was made. A script called McCord was developed as a link between deterministic program package CORD-2 and Monte Carlo code MCNP. It automatically generates an MCNP input from the CORD-2 data. A detailed MCNP core model was used to calculate 3D power distributions inside the core. Calculated power distributions were verified by comparison to the CORD-2 calculations, which is currently used for core design calculation verification of the Krško nuclea power plant. For the hot zero power configuration, the deviations are within 3 % for majority of fuel assemblies and slightly higher for fuel assemblies located at the core periphery. The computational model was further verified by comparing the calculated control rod worth to the CORD-2 results. The deviations were within 50 pcm and considered acceptable. The research will in future be supplemented with the in-core and ex-core detector signal calculations and neutron transport outside the reactor core.


2016 ◽  
Vol 96 ◽  
pp. 332-343 ◽  
Author(s):  
M.V. Shchurovskaya ◽  
V.P. Alferov ◽  
N.I. Geraskin ◽  
A.I. Radaev ◽  
A.G. Naymushin ◽  
...  

Author(s):  
Jin Wang ◽  
Donghui Zhang ◽  
Wenjun Hu ◽  
Lixia Ren

A fast reactor is one of recommended candidates of Generation IV nuclear energy systems, which would meet wide requirements such as sustainability, safety and economics for nuclear energy development. To be the China’s first fast reactor, China Experimental Fast Reactor (CEFR) typical technical options are following: 65 MW thermal power and 20 MW electric power, three circuits of sodium-sodium-water, integrated pool type structure for the primary circuit. To establish modular simulation system for sodium fast reactor, the code which simulated the thermal-hydraulic behavior of primary circuit was developed. The physical models include reactor core, reactor vessel cooling channel, pumps, protection vessel, intermediate heat exchangers, ionization chamber cooling channel, cold sodium pool, hot sodium pool, inlet plenum, and pipes, etc. The code could compute coolant pressures, flow rates, and temperatures in the primary circuit. This module was designed for analysis of a wide range of transients. Although based on CEFR, it can treat an arbitrary arrangement of components.


2016 ◽  
Vol 2 (2) ◽  
Author(s):  
Haykel Raouafi ◽  
Guy Marleau

The Canadian-SCWR is a heavy-water moderated supercritical light-water-cooled pressure tube reactor. It is fueled with CANada deuterium uranium (CANDU)-type bundles (62 elements) containing a mixture of thorium and plutonium oxides. Because the pressure tubes are vertical, the upper region of the core is occupied by the inlet and outlet headers render it nearly impossible to insert vertical control rods in the core from the top. Insertion of solid control devices from the bottom of the core is possible, but this option was initially rejected because it was judged impractical. The option that is proposed here is to use inclined control rods that are inserted from the side of the reactor and benefit from the gravitational pull exerted on them. The objective of this paper is to evaluate the neutronic performance of the proposed inclined control rods. To achieve this goal, we first develop a three-dimensional (3D) supercell model to simulate an inclined rod located between four vertical fuel cells. Simulations are performed with the SERPENT Monte Carlo code at five axial positions in the reactor to evaluate the effect of coolant temperature and density, which varies substantially with core height, on the reactivity worth of the control rods. The effect of modifying the inclination and spatial position of the control rod inside the supercell is then analyzed. Finally, we evaluate how boron poisoning of the moderator affects their effectiveness.


2021 ◽  
Vol 247 ◽  
pp. 04021
Author(s):  
Marton Szogradi

In order to meet modern industrial and scientific demands the Kraken multi-physics platform’s development was recently launched at VTT Technical Research Centre of Finland. The neutronic solver of the framework consists of two calculation chains, providing full core solutions by the Serpent high fidelity code (1) and the AFEN/FENM-based reduced-order diffusion solver called Ants (2) capable of handling square and hexagonal geometries in steady-state. Present work introduces the simulation of a large 3600 MWth Sodium-cooled Fast Reactor (SFR) described within the activities of the Working Party on Scientific Issues of Reactor Systems (WPRS) of OECD. Full-core 3D results were obtained by Serpent for carbide- and oxide-fuel cores, moreover group constants were generated for Ants utilizing 2D super-cell and single assembly infinite lattice models of Serpent. The continuous-energy Monte Carlo method provided the reference results for the verification of the reduced-order method. Implementing the spatially homogenized properties, 3D solutions were obtained by Ants as well for both core configurations. Comparison was made between the various core designs and codes based on reactivity feedbacks (Doppler constant, sodium voiding, control rod worth) considering power distributions. Regarding reactivity sensitivity on geometry, axial fuel- and radial core expansion coefficients were evaluated as well.


Author(s):  
Hao Luo ◽  
Mancang Li ◽  
Shanfang Huang ◽  
Minyun Liu ◽  
Kan Wang

Sign in / Sign up

Export Citation Format

Share Document