scholarly journals Thin film pc-Si by aluminium induced crystallization on metallic substrate

2013 ◽  
Vol 4 ◽  
pp. 45102 ◽  
Author(s):  
F. Delachat ◽  
F. Antoni ◽  
P. Prathap ◽  
A. Slaoui ◽  
C. Cayron ◽  
...  
Carbon ◽  
2020 ◽  
Vol 159 ◽  
pp. 656-667 ◽  
Author(s):  
Daniel Janke ◽  
Frans Munnik ◽  
Jaakko Julin ◽  
René Hübner ◽  
Jörg Grenzer ◽  
...  

2014 ◽  
Vol 1682 ◽  
Author(s):  
Kate J. Norris ◽  
Brian Tuan ◽  
Elane Coleman ◽  
David M. Fryauf ◽  
Junce Zhang ◽  
...  

ABSTRACTMore than 50% of total input energy is wasted as heat in various industrial processes. If we could harness a small fraction of the waste heat while satisfying the economic demands of cost versus performance, then thermoelectric (TE) power generation could bring substantial positive impacts. To meet these demands single-crystal semiconductor nanowire networks have been investigated as a method to achieve advanced TE devices because of their predicted large reduction in thermal conductivity and increase in power factor.To further our goal of developing practical and economical TE devices, we designed and developed a material platform that combined a semiconductor nanowire network and a semiconductor thin film integrated directly on a mechanically flexible metallic substrate. We assessed the potential of this platform by using indium phosphide (InP) nanowire networks and a doped poly-silicon (poly-Si) thin film combined on copper sheets. InP nanowires were grown by metal organic chemical vapor deposition (MOCVD). In the nanowire network, InP nanowires were grown in three-dimensional networks in which electrical charges and heat travel under the influence of their characteristic scattering mechanisms over a distance much longer than the mean length of the constituent nanowires. Subsequently, plasma-assisted CVD was utilized to form a poly-Si thin film to prevent electrical shorting when an ohmic copper top contact was made. An additional facet to this design is the utilization of multiple materials to address the various temperature ranges at which each material is most efficient at heat-to-energy conversion. The utilization of multiple materials could enable the enhancement of total power generation for a given temperature gradient. We investigated the use of poly-Si thin films combined with InP nanowires to enhance TE properties. TE power production and challenges of a large area nanowire device on a flexible metallic substrate were presented.


1992 ◽  
Vol 114 (1) ◽  
pp. 271-277 ◽  
Author(s):  
C. P. Grigoropoulos ◽  
W. E. Dutcher

The process of laser melting and recrystallization of thin silicon films, which are deposited on amorphous substrates, is capable of improving the semiconductor electrical and crystalline properties. The process is controlled by the intensity of the laser beam, the material translation speed, and the thermal and radiative properties of the semiconductor layer and the encapsulating structure. Accurate theoretical modeling of the associated phase change process is essential for optimal material processing. This paper presents a numerical model implementing a front-fixing approach and body-fitted curvilinear grids to analyze the heat transfer and the induced crystallization rates in thin film laser annealing. The results are compared to experimental data and reasonable agreement is obtained. Further improvements depend upon knowledge of thin film thermal and optical properties.


Sign in / Sign up

Export Citation Format

Share Document