scholarly journals Effects of Shear Layer Characteristics on Acoustic Propagation and Source Localization

Author(s):  
Lican Wang ◽  
Rongqian Chen ◽  
Yancheng You ◽  
Zhengwu Chen ◽  
Ruofan Qiu

The shear layer characteristics of an open-jet acoustic wind tunnel are of key importance on measurements of aeroacoustics. The effects of thickness, spreading angle and strength of shear layer on acoustic propagation and source localization are investigated through the mean/spreading shear layer with a self-similar velocity distribution. Based on the shear flow, the acoustic propagation is computed by the linearized Euler equations via a source term, and then source localization is obtained from beamforming technique combined with the theory of Amiet. Results show that the numerical method can precisely capture the refraction and reflection after sound traversing shear layer. The thickness, spreading angle and strength of the shear layer exerts little effects on the refracted region where sound wave nearly vertical incident, while mainly influence the corresponding up/downstream region in terms of phase change. Increment of thickness, spreading angle and strength of the shear layer increases the acoustic difference between the shear layer with and without thickness, and produces a larger error of source localization downstream of the actual position.

Organized structures in turbulent shear flow have been observed both in the laboratory and in the atmosphere and ocean. Recent work on modelling such structures in a temporally developing, horizontally homogeneous turbulent free shear layer (Liu & Merkine 19766) has been extended to the spatially developing mixing layer, there being no available rational transformation between the two nonlinear problems. We consider the kinetic energy development of the mean flow, large-scale structure and finegrained turbulence with a conditional average, supplementing the usual time average, to separate the non-random from the random part of the fluctuations. The integrated form of the energy equations and the accompanying shape assumptions are used to derive ‘ amplitude ’ equations for the mean flow, characterized by the shear layer thickness, the non-random and the random components of flow (which are characterized by their respective energy densities). The closure problem was overcome by the shape assumptions which entered into the interaction integrals: the instability-wavelike large-scale structure was taken to be two-dimensional and the local vertical distribution function was obtained by solving the Rayleigh equation for various local frequencies; the vertical shape of the mean stresses of the fine-grained turbulence was estimated by making use of experimental results; the vertical shapes of the wave-induced stresses were calculated locally from their corresponding equations.


1988 ◽  
Vol 187 ◽  
pp. 1-33 ◽  
Author(s):  
J. J. Rohr ◽  
E. C. Itsweire ◽  
K. N. Helland ◽  
C. W. Van Atta

A uniform-mean-gradient shear flow was produced using a ten-layer closed-loop water channel, providing long enough dimensionless flow development times (τ = (x/Ū) (∂ Ū/∂z)) for the turbulence to grow. The rate of growth of the turbulence compares well with similar measurements in wind-tunnel-generated uniform shear flows for which the mean shears and centreline velocities are larger by an order of magnitude. Preliminary investigations were undertaken to study the growth of the turbulent intensity as functions of the mean shear, centreline velocity, and initial disturbance lengthscales. Initial disturbance lengthscales were varied by using grids of different mesh sizes.Turbulent intensities were found to increase nearly linearly with τ. Differences in grid mesh size produce different offsets in the turbulent intensity level, with a larger grid mesh producing a higher positive offset. This offset persists throughout the growth of the turbulent intensity. These observations provide valuable insight in interpreting previous wind-tunnel measurements, in particular the high-shear experiments of Karnik & Tavoularis (1983). Comparison with the theoretical predictions of Tavoularis (1985) allows for an improved universal characterization of evolving turbulence in a uniform mean shear.


2013 ◽  
Vol 351-352 ◽  
pp. 34-37
Author(s):  
Jwo Hua Chen ◽  
Chin Cheng Chou

A series of wind tunnel aerodynamic experiments were conducted to investigate the wind loads on the low-rise buildings located around the hillside. The result shown, the steep roof slope may cause a separation bubble at the edge and the small separation shear layer reattached the roof just near the edge due to the steep slope of roof at the uphill side. At the downhill side, the mean pressures of the building with gently slope roof to be positive for most of them. The building seems to be covered by the hill separation bubble, and the approaching flow with negative inclination acting on the buildings. The surface pressures of low-rise buildings may not reflect the local shear layer behaviors, but they shown the acting results of the wake of the hill. The fluctuating pressures distribution at low-rise buildings located at hillside would slightly less than the ones without hill.


Author(s):  
Ye. A. Gayev ◽  
Eric Savory ◽  
Norman Toy
Keyword(s):  

2016 ◽  
Vol 11 (2) ◽  
pp. 150-155
Author(s):  
R. Troian ◽  
D. Dragna ◽  
C. Bailly ◽  
M.-A. Galland

Modeling of acoustic propagation in a duct with absorbing treatment is considered. The surface impedance of the treatment is sought in the form of a rational fraction. The numerical model is based on a resolution of the linearized Euler equations by finite difference time domain for the calculation of the acoustic propagation under a grazing flow. Sensitivity analysis of the considered numerical model is performed. The uncertainty of the physical parameters is taken into account to determine the most influential input parameters. The robustness of the solution vis-a-vis changes of the flow characteristics and the propagation medium is studied.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Mouhammad El Hassan ◽  
Laurent Keirsbulck ◽  
Larbi Labraga

Aero-acoustic coupling inside a deep cavity is present in many industrial processes. This investigation focuses on the pressure amplitude response, within two deep cavities characterized by their length over depth ratios (L/H=0.2 and 0.41), as a function of freestream velocities of a 2×2m2 wind tunnel. Convection velocity of instabilities was measured along the shear layer, using velocity cross-correlations. Experiments have shown that in deep cavity for low Mach numbers, oscillations of discrete frequencies can be produced. These oscillations appear when the freestream velocity becomes higher than a minimum value. Oscillations start at L/θ0=10 and 21 for L/H=0.2 and 0.41, respectively. The highest sound pressure level inside a deep cavity is localized at the cavity floor. A quite different behavior of the convection velocity was observed between oscillating and nonoscillating shear-layer modes. The hydrodynamic mode of the cavity shear layer is well predicted by the Rossiter model (1964, “Wind Tunnel Experiments on the Flow Over Rectangular Cavities at Subsonic and Transonic Speeds,” Aeronautical Research Council Reports and Memo No. 3438) when measured convection velocity is used and the empirical time delay is neglected. For L/H=0.2, only the first Rossiter mode is present. For L/H=0.41, both the first and the second modes are detected with the second mode being the strongest.


2002 ◽  
Vol 205 (16) ◽  
pp. 2461-2467 ◽  
Author(s):  
Felix Liechti ◽  
Lukas Bruderer

SUMMARYThe flight paths and wingbeat patterns of 39 barn swallows (Hirundo rustica) and 26 house martins (Delichon urbica) were recorded by tracking radar during the spring migration. Depending mostly on flight angle,hirundines performed anything from continuous flapping flight during climbing to single pulse-like wing beats during descent. Unlike most other passerines,hirundines rarely showed regular flapping and rest phases, allowing them to be distinguished from other bird migrants by radar echo signatures. Effective wingbeat frequency (Feff) was calculated as the mean number of wing beats per second, including non-flapping phases. Under comparable flight conditions, Feff was higher in house martins than in barn swallows. Within species, Feff values were higher during climbing and slow flying than during descent. Of the variance in Feff, 71 % could be explained by climb rate,air speed and species; similar results were obtained in the wind tunnel. Under comparable flight conditions, barn swallows and house martins in free flight had significantly lower values of Feff than individuals in wind tunnel experiments (by 40 % and 32 %, respectively). This difference may at least partly be due to the shorter wings of the juveniles tested in the wind tunnel during autumn. However, it seems unlikely that this can account for all of the large difference. It is suggested that wind tunnel experiments might overestimate birds' flight costs compared with free flight.


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Yuanchao Li ◽  
Huang Chen ◽  
Joseph Katz

Modeling of turbulent flows in axial turbomachines is challenging due to the high spatial and temporal variability in the distribution of the strain rate components, especially in the tip region of rotor blades. High-resolution stereo-particle image velocimetry (SPIV) measurements performed in a refractive index-matched facility in a series of closely spaced planes provide a comprehensive database for determining all the terms in the Reynolds stress and strain rate tensors. Results are also used for calculating the turbulent kinetic energy (TKE) production rate and transport terms by mean flow and turbulence. They elucidate some but not all of the observed phenomena, such as the high anisotropy, high turbulence levels in the vicinity of the tip leakage vortex (TLV) center, and in the shear layer connecting it to the blade suction side (SS) tip corner. The applicability of popular Reynolds stress models based on eddy viscosity is also evaluated by calculating it from the ratio between stress and strain rate components. Results vary substantially, depending on which components are involved, ranging from very large positive to negative values. In some areas, e.g., in the tip gap and around the TLV, the local stresses and strain rates do not appear to be correlated at all. In terms of effect on the mean flow, for most of the tip region, the mean advection terms are much higher than the Reynolds stress spatial gradients, i.e., the flow dynamics is dominated by pressure-driven transport. However, they are of similar magnitude in the shear layer, where modeling would be particularly challenging.


Sign in / Sign up

Export Citation Format

Share Document