EBIC contrast study of the recombination mechanism at dislocations in GaAs

1992 ◽  
Vol 2 (3) ◽  
pp. 325-333 ◽  
Author(s):  
B. Sieber ◽  
J. L. Farvacque ◽  
P. Carton
1991 ◽  
Vol 01 (C6) ◽  
pp. C6-35-C6-37
Author(s):  
B. SIEBER ◽  
J. L. FARVACQUE

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nathalie Raharimalala ◽  
Stephane Rombauts ◽  
Andrew McCarthy ◽  
Andréa Garavito ◽  
Simon Orozco-Arias ◽  
...  

AbstractCaffeine is the most consumed alkaloid stimulant in the world. It is synthesized through the activity of three known N-methyltransferase proteins. Here we are reporting on the 422-Mb chromosome-level assembly of the Coffea humblotiana genome, a wild and endangered, naturally caffeine-free, species from the Comoro archipelago. We predicted 32,874 genes and anchored 88.7% of the sequence onto the 11 chromosomes. Comparative analyses with the African Robusta coffee genome (C. canephora) revealed an extensive genome conservation, despite an estimated 11 million years of divergence and a broad diversity of genome sizes within the Coffea genus. In this genome, the absence of caffeine is likely due to the absence of the caffeine synthase gene which converts theobromine into caffeine through an illegitimate recombination mechanism. These findings pave the way for further characterization of caffeine-free species in the Coffea genus and will guide research towards naturally-decaffeinated coffee drinks for consumers.


Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 549-557 ◽  
Author(s):  
Anne J Welcker ◽  
Jacky de Montigny ◽  
Serge Potier ◽  
Jean-Luc Souciet

Abstract Chromosomal rearrangements, such as deletions, duplications, or Ty transposition, are rare events. We devised a method to select for such events as Ura+ revertants of a particular ura2 mutant. Among 133 Ura+ revertants, 14 were identified as the result of a deletion in URA2. Of seven classes of deletions, six had very short regions of identity at their junctions (from 7 to 13 bp long). This strongly suggests a nonhomologous recombination mechanism for the formation of these deletions. The total Ura+ reversion rate was increased 4.2-fold in a rad52Δ strain compared to the wild type, and the deletion rate was significantly increased. All the deletions selected in the rad52Δ context had microhomologies at their junctions. We propose two mechanisms to explain the occurrence of these deletions and discuss the role of microhomology stretches in the formation of fusion proteins.


2004 ◽  
Vol 24 (12) ◽  
pp. 5130-5143 ◽  
Author(s):  
Christine Soustelle ◽  
Laurence Vernis ◽  
Karine Fréon ◽  
Anne Reynaud-Angelin ◽  
Roland Chanet ◽  
...  

ABSTRACT The Saccharomyces cerevisiae Srs2 protein is involved in DNA repair and recombination. In order to gain better insight into the roles of Srs2, we performed a screen to identify mutations that are synthetically lethal with an srs2 deletion. One of them is a mutated allele of the ULP1 gene that encodes a protease specifically cleaving Smt3-protein conjugates. This allele, ulp1-I615N, is responsible for an accumulation of Smt3-conjugated proteins. The mutant is unable to grow at 37°C. At permissive temperatures, it still shows severe growth defects together with a strong hyperrecombination phenotype and is impaired in meiosis. Genetic interactions between ulp1 and mutations that affect different repair pathways indicated that the RAD51-dependent homologous recombination mechanism, but not excision resynthesis, translesion synthesis, or nonhomologous end-joining processes, is required for the viability of the mutant. Thus, both Srs2, believed to negatively control homologous recombination, and the process of recombination per se are essential for the viability of the ulp1 mutant. Upon replication, mutant cells accumulate single-stranded DNA interruptions. These structures are believed to generate different recombination intermediates. Some of them are fixed by recombination, and others require Srs2 to be reversed and fixed by an alternate pathway.


2021 ◽  
Vol 5 (5) ◽  
Author(s):  
Sudhanshu Shukla ◽  
Damilola Adeleye ◽  
Mohit Sood ◽  
Florian Ehre ◽  
Alberto Lomuscio ◽  
...  

2011 ◽  
Vol 339 ◽  
pp. 624-629
Author(s):  
Lian Cheng Ren ◽  
Zheng Liang ◽  
Jiang Meng ◽  
Lin Yang ◽  
Jia Lin Tian

On the base of numerical simulation and theoretical analysis, the flow field of a conventional single-tangential-inlet Hydrocyclone and a newly put forward axial-symmetry double-tangential-inlet hydrocyclone were contrasted. The study shows that the inlet structure of the Hydrocylone has a great influence on the radial velocity of the flow field in the hydrocyclone and that the radial velocity in the hydrocyclone with single-tangential-inlet is not symmetry about the axis of the hydrocyclone; and on the other hand the radial velocity in the hydrocyclone with axial-symmetry double-tangential-inlet is symmetry about the axis of the hydrocyclone. The magnitude of the radial velocity of the flow in the hydrocyclone with single-tangential-inlet is greater than that in the hydrocyclone with axial-symmetry double-tangential-inlet hydrocyclone, which means the hydrocyclone with axial-symmetry double-tangential-inlet has greater capability than the rival one with single-tangential inlet. The symmetry about the axis of the hydrocyclone of the radial velocity means the radial velocities in the place where the radio is the same are constant, which means the hydrocyclone has a great separation efficiency. The conclusion is that changing the conventional hydrocyclone into the one with axial-symmetry double-tangential-inlet structure can offer greater separation capability and efficiency.


1993 ◽  
Vol 13 (10) ◽  
pp. 6393-6402 ◽  
Author(s):  
M A MacInnes ◽  
J A Dickson ◽  
R R Hernandez ◽  
D Learmonth ◽  
G Y Lin ◽  
...  

Several human genes related to DNA excision repair (ER) have been isolated via ER cross-species complementation (ERCC) of UV-sensitive CHO cells. We have now isolated and characterized cDNAs for the human ERCC5 gene that complement CHO UV135 cells. The ERCC5 mRNA size is about 4.6 kb. Our available cDNA clones are partial length, and no single clone was active for UV135 complementation. When cDNAs were mixed pairwise with a cosmid clone containing an overlapping 5'-end segment of the ERCC5 gene, DNA transfer produced UV-resistant colonies with 60 to 95% correction of UV resistance relative to either a genomic ERCC5 DNA transformant or the CHO AA8 progenitor cells. cDNA-cosmid transformants regained intermediate levels (20 to 45%) of ER-dependent reactivation of a UV-damaged pSVCATgpt reporter plasmid. Our evidence strongly implicates an in situ recombination mechanism in cDNA-cosmid complementation for ER. The complete deduced amino acid sequence of ERCC5 was reconstructed from several cDNA clones encoding a predicted protein of 1,186 amino acids. The ERCC5 protein has extensive sequence similarities, in bipartite domains A and B, to products of RAD repair genes of two yeasts, Saccharomyces cerevisiae RAD2 and Schizosaccharomyces pombe rad13. Sequence, structural, and functional data taken together indicate that ERCC5 and its relatives are probable functional homologs. A second locus represented by S. cerevisiae YKL510 and S. pombe rad2 genes is structurally distinct from the ERCC5 locus but retains vestigial A and B domain similarities. Our analyses suggest that ERCC5 is a nuclear-localized protein with one or more highly conserved helix-loop-helix segments within domains A and B.


Sign in / Sign up

Export Citation Format

Share Document