scholarly journals Wave form of short shock wave reflected from bubble layers in water

1994 ◽  
Vol 04 (C5) ◽  
pp. C5-1121-C5-1124
Author(s):  
N. V. MALYKH
Keyword(s):  
2014 ◽  
Vol 136 (9) ◽  
Author(s):  
Y. Liu ◽  
B. Grieves

When a shock interacts with a Sn coupon, micrometer-scale particulate fragments, called ejecta, are usually formed and emitted from its free surface. Understanding the characteristics of such ejecta is of great importance in many fields. The velocity distribution and amount of particulate mass are directly dependent on several physical properties of the shock wave and shocked material states. In this paper, we numerically interrogate ejecta production and its dynamics for a wide range of shock loading conditions in a supported wave form and quantify the correlation of ejecta source with shock strength as well as surface roughness, which is represented by randomly perturbed surfaces and the one with a macrofeature superimposed. Furthermore, an unsteadiness-aware drag coefficient is discussed and implemented to accomplish ejecta transport studies.


Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


Author(s):  
M.A. Mogilevsky ◽  
L.S. Bushnev

Single crystals of Al were loaded by 15 to 40 GPa shock waves at 77 K with a pulse duration of 1.0 to 0.5 μs and a residual deformation of ∼1%. The analysis of deformation structure peculiarities allows the deformation history to be re-established.After a 20 to 40 GPa loading the dislocation density in the recovered samples was about 1010 cm-2. By measuring the thickness of the 40 GPa shock front in Al, a plastic deformation velocity of 1.07 x 108 s-1 is obtained, from where the moving dislocation density at the front is 7 x 1010 cm-2. A very small part of dislocations moves during the whole time of compression, i.e. a total dislocation density at the front must be in excess of this value by one or two orders. Consequently, due to extremely high stresses, at the front there exists a very unstable structure which is rearranged later with a noticeable decrease in dislocation density.


Author(s):  
Kenneth S. Vecchio

Shock-induced reactions (or shock synthesis) have been studied since the 1960’s but are still poorly understood, partly due to the fact that the reaction kinetics are very fast making experimental analysis of the reaction difficult. Shock synthesis is closely related to combustion synthesis, and occurs in the same systems that undergo exothermic gasless combustion reactions. The thermite reaction (Fe2O3 + 2Al -> 2Fe + Al2O3) is prototypical of this class of reactions. The effects of shock-wave passage through porous (powder) materials are complex, because intense and non-uniform plastic deformation is coupled with the shock-wave effects. Thus, the particle interiors experience primarily the effects of shock waves, while the surfaces undergo intense plastic deformation which can often result in interfacial melting. Shock synthesis of compounds from powders is triggered by the extraordinarily high energy deposition rate at the surfaces of the powders, forcing them in close contact, activating them by introducing defects, and heating them close to or even above their melting temperatures.


1982 ◽  
Vol 25 (4) ◽  
pp. 521-527 ◽  
Author(s):  
David C. Shepherd

In 1977, Shepherd and colleagues reported significant correlations (–.90, –.91) between speechreading scores and the latency of a selected negative peak (VN 130 measure) on the averaged visual electroencephalic wave form. The primary purpose of this current study was to examine the stability, or repeatability, of this relation between these cognitive and neurophysiologic measures over a period of several months and thus support its test-retest reliability. Repeated speechreading word and sentence scores were gathered during three test-retest sessions from each of 20 normal-hearing adults. An average of 56 days occurred from the end of one to the beginning of another speechreading sessions. During each of four other test-retest sessions, averaged visual electroencephalic responses (AVER s ) were evoked from each subject. An average of 49 clays intervened between AVER sessions. Product-moment correlations computed among repeated word scores and VN l30 measures ranged from –.61 to –.89. Based on these findings, it was concluded that the VN l30 measure of visual neural firing time is a reliable correlate of speech-reading in normal-hearing adults.


2007 ◽  
Vol 177 (4S) ◽  
pp. 417-417
Author(s):  
Eric A. Singer ◽  
Jared D. Christensen ◽  
Susan Messing ◽  
Erdal Erturk

2005 ◽  
Vol 173 (4S) ◽  
pp. 300-301
Author(s):  
Michaella E. Maloney ◽  
Pei Zhong ◽  
Charles G. Marguet ◽  
Yufeng F. Zhou ◽  
Jeffrey C. Sung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document