TRIBOLOGICAL PROPERTIES OF SILICON INFILTRATED SiC GRADES CONTAINING CARBON PARTICLES

1986 ◽  
Vol 47 (C1) ◽  
pp. C1-745-C1-749
Author(s):  
W. HEIDER ◽  
R. RÖTTENBACHER
Tribologia ◽  
2019 ◽  
Vol 285 (3) ◽  
pp. 79-87 ◽  
Author(s):  
Jerzy MYALSKI ◽  
Andrzej Posmyk ◽  
Bartosz HEKNER ◽  
Marcin GODZIERZ

Carbon with an amorphous structure was used as a component to modify the tribological properties of engineering plastics. Its construction allows the formation of carbon-based wear products during friction, adhesively bonded to the surface of cooperating machine parts, acting as a solid lubricant. The work compares the tribological properties of two groups of composites with an aluminium alloy matrix in which glassy carbon appeared in the form of particles and an open cell foam fulfilling the role of strengthening the matrix. The use of spatial structures of reinforcement provides, in comparison with the strengthening of particles, homogeneity of carbon distribution in the entire volume of the composite. The tests carried out on a pin-disc tester showed that the use of spatial carbon structures in the composite ensures a greater coefficient of friction stability than when reinforcing with particles, and the coefficient of friction with a small proportion of carbon foams (about 1 wt%) is comparable with the coefficient of friction in the contact with composites containing 5-10% carbon particles in granular form.


2015 ◽  
Vol 2015 (CICMT) ◽  
pp. 000125-000130
Author(s):  
Bartosz Hekner ◽  
Jerzy Myalski

This paper presents an influence of reinforcement and additions types on tribological properties for composite materials produced for potential application in high loaded friction point. The influence of carbon nanotubes or amorphous form of carbon on tribological properties was subject of authors' interest. A technology of materials manufacturing based on preparation of composite powders using high energy ball milling, with subsequent hot pressing in the semi-liquid phase. All materials based on an aluminum alloys, with silicon carbide (SiC) or silicon nitride particles (Si3N4) applied as a reinforcement. As a additions 1 wt.% of multiwalled carbon nanotubes (CNT) or 5 wt.% of glassy carbon particles (GCp) were used. A proper parameters selection (speed, powder to ball ratio, time ect.) of high energy milling led to fragmentation of ceramic particles up to nano- or submicro scale with desirable homogenization in whole volume of solid material. Due to partially crushed of glassy carbon particles, their size was between 2 – 200 μm. However GCp revealed also proper distribution in volume of composite. Moreover, the good quality of bonding between matrix and reinforcement particles were achieved due to high energy during milling. For manufactured materials a rating of tribological properties (coefficient of friction, wear rate, ect.) at ambient and high temperature were made. The research confirmed that, due to desirable coefficient of friction (COF) value and low mass loss, manufactured materials can be applied in automotive industry, eg. for brake pads. A high stability of COF on desirable value (0.5 – 0.8) was observed up to temperature higher than 500 °C. The application of carbon additions resulted in increasing of friction properties. The material with silicon nitride as a reinforcement and glassy carbon particles addition revealed the best friction properties between analysed materials.


2014 ◽  
Vol 59 (1) ◽  
pp. 365-369 ◽  
Author(s):  
B. Juszczyk ◽  
J. Kulasa ◽  
W. Malec ◽  
Sz. Malara ◽  
M. Czepelak ◽  
...  

Abstract The paper presents results of the studies into influence of individual particles of lubricating phase on microstructure and tribological properties of copper based composite materials for slide bearings. The studied material was composed of copper alloys with lubricating phase particles, e.g. in a form of graphite and glassy carbon. The metallic matrix of composite materials consisted of Cu-Sn type alloys. Production of the examined materials included processes with complete or partial participation of liquid phase and was conducted in two ways. In production of composites both classical powder metallurgy technology was applied and a method of melting with simultaneous mechanical stirring in liquid state (stir casting). Particles of lubricating phases were heated up to the temperature of 200°C and introduced into a liquid metal and then stirring process at constant rate of 1500 rpm rotational speed was applied. To improve wettability of graphite and glassy carbon particles titanium was introduced into the metallic matrix. In production of the composites by powder metallurgy methods the process consisted of mixing of bronze powders and particles of non-metallic phases and then their consolidation. Both quantitative and qualitative structure analysis of the produced composites was performed. Also through evaluation of tribological properties (friction coefficient, wear) with CSM Instruments high temperature tribometer THT was conducted.


2016 ◽  
Vol 246 ◽  
pp. 157-162
Author(s):  
Bartosz Hekner ◽  
Jerzy Myalski ◽  
Paweł Krzywda ◽  
Aleksandra Miczek

This paper presents the manufacturing process and the results of measurements for aluminum – aluminum oxide materials with addition of glassy carbon particles (GC). The composites were manufactured via high energy milling process with hot pressing subsequently. The influence of mass fraction (5, 10 and 15 wt.%) and a size of GC particles (<40, 40-80, 80-120, 120-160, 160-200µm) on the microstructure and properties were analysed. The complex meaning of GC particles for all, milling process, microstructure and final properties were discovered. After based description of materials, the tribological measurement were performed under two loads – 35 and 50N. It was noted, that mass fraction of GC particles have influence on tribological properties of materials. The composite with 5 wt.% revealed the best friction properties without any significant differences between analysed loads. The influence of particles size proved that the most effective fraction for tribological application is 120 – 160µm.


2010 ◽  
Vol 123-125 ◽  
pp. 51-54
Author(s):  
Xiao Yan Deng ◽  
Jin Cheng Xu ◽  
Wei Hua ◽  
Liang Liang Tian ◽  
Li Jun Ai ◽  
...  

Al-Cu-Mg alloy and its matrix composites reinforced with different volume fractions of sub-micron silicon carbide particles have been produced in powder metallurgy route. The effects of silicon carbon particles and mechanical alloying (MA) technology on the mechanical and tribological properties were investigated. The results show that the composites have better mechanical and tribological properties than the matrix alloy, and the 9vol%SiCp/Al-Cu-Mg composite has the best performances. Mechanical alloying (MA) technology further improves the hardness and tensile strength, hardly influences the wear rate of the 9vol%SiCp/Al-Cu-Mg composite but somewhat affects its friction coefficient.


2016 ◽  
Vol 2016 (5) ◽  
pp. 413-418
Author(s):  
I. N. Ushakova ◽  
E. I. Drozdova ◽  
O. P. Chernogorova ◽  
V. M. Blinov ◽  
E. A. Ekimov

1969 ◽  
Vol 22 (03) ◽  
pp. 496-507 ◽  
Author(s):  
W.G van Aken ◽  
J Vreeken

SummaryCarbon particles cause platelet aggregation in vitro and in vivo. Prior studies established that substances which modify thrombocyte aggregation also influence the rate at which carbon is cleared from the blood.This study was performed in order to elucidate the mechanism by which the carbon-platelet aggregates specifically accumulate in the RES.Activation of fibrinolysis by urokinase or streptokinase reduced the carbon clearance rate, probably due to generated fibrinogen degradation products (FDP). Isolated FDP decreased the carbon clearance and caused disaggregation of platelets and particles in vitro. Inhibition of fibrinolysis by epsilon-amino-caproic acid (EACA), initially accelerated the disappearance of carbon and caused particle accumulation outside the RES, predominantly in the lungs. It is supposed that platelet aggregation and locally activated fibrinolysis act together in the clearance of particles. In the normal situation the RES with its well known low fibrinolytic activity, becomes the receptor of the particles.


2018 ◽  
Vol 91 (9) ◽  
pp. 358-361
Author(s):  
Takuya OHZONO ◽  
Kay TERAOKA

Sign in / Sign up

Export Citation Format

Share Document