scholarly journals Atmospheric Air –the Effective Source of Low-Grade Thermal Energy for Heat Pump Snow Melting Systems under Climatic Conditions of Moscow

2015 ◽  
Vol 30 ◽  
pp. 05001 ◽  
Author(s):  
G.P. Vasilyev ◽  
V.A. Leskov ◽  
N.V. Mitrofanova ◽  
V.F. Gornov ◽  
M.V. Kolesova ◽  
...  
2016 ◽  
Vol 856 ◽  
pp. 297-302 ◽  
Author(s):  
Anna Tsynaeva ◽  
Katerina Tsynaeva

Systems of heat consumption of the building with heat pump that uses low-grade heat source are investigated. Effectiveness of heat consumption systems with heat pump is concluded effective for severe climatic conditions prevailing in Russia. Characteristics of heat consumption system with heat pump and the traditional heating system are compared. In this case the heat pump is used the warmth of the environment, that is why considered operating conditions for the autumn and spring. Low inertia of heat systems with heat pump compared to traditional ones during autumn and spring proved.


2016 ◽  
Vol 6 (2) ◽  
pp. 129-134
Author(s):  
Anna A. TSYNAEVA ◽  
Ekaterina A. TSYNAEVA

This paper deals with automatic control systems of heat consumption of buildings. As a method of study we used computational and theoretical method using the theory of differential equations, control theory, methods of analysis and synthesis, including the numerical experiment. In this paper, a comparison of the characteristics of an automated heat control system in buildings, using the heat pump from the low-grade heat source, as well as conventional systems, receiving heat from the CHP for heat networks. Numerical study carried out for conditions of autumn-spring period, as during the research of heat system, the environment is selected as the low-grade heat source. Moreover, It is analysed climatic conditions start of the heating period in 2014 and 2015. for the city of Samara. Based on the numerical investigation revealed that for the autumnspring period automated heat system with a heat pump has a lower inertia than a conventional system with.


Author(s):  
Jonathan S. Levine ◽  
Klaus S. Lackner ◽  
Vijay Modi

Efficient and affordable energy storage technologies would enable greater use of electricity generation with low operating but high capital cost. Such generating plants must maximize their utilization to spread capital cost over as much output as possible. Without affordable storage capacity their penetration into the market is limited to base load. Intermittent solar and wind power, which at times are simply not available, suffer even more than baseline power plants from the lack of affordable storage technologies. With the exception of pumped hydro-storage, energy storage is too expensive, suffering from low energy density in storage and low round-trip efficiency. Low grade thermal storage with temperature differences of up to about 100°C could achieve storage densities far in excess of that in most pumped storage facilities while avoiding the costs associated with high temperature operations. Roundtrip efficiency, defined as the ratio of the electric output from a heat engine driven by stored thermal energy to the electric input used to drive a heat pump to store the thermal energy, can approach 100% as the heat pump and the heat engine both approach Carnot efficiency. This theoretical limit is independent of the temperature difference between the heat reservoirs. Roundtrip efficiencies of at least 70 to 80% are necessary for energy storage to be economically competitive with higher priced electricity sources. This high round trip efficiency implies that both the heat engine and the heat pump would have to operate at 85 to 90% of the efficiency of a reversible engine. The most promising practical engines for such high efficiency are based on the Stirling cycle. This paper discusses a variation of the Stirling cycle aimed at large, slow units optimized for high efficiency far in excess of the Curzon-Ahlborn efficiency, which results from maximizing the power of the engine. This tradeoff in favor of efficiency over power output demands extreme simplicity in design, as the size of the engine is far larger than that of conventional engines optimized for power throughput. The goal of the paper is to show that low-grade thermal energy storage could provide a viable alternative to regionally limited pumped hydro-storage as long as the design challenges explained in the paper can be overcome. Given the current lack of cost-effective, scalable energy storage systems, thermal storage technology could have a profound impact on future energy infrastructures.


Author(s):  
Ji Li ◽  
Zikang Zhang ◽  
Runze Zhao ◽  
Bo Zhang ◽  
Yunmin Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document