scholarly journals 3D printing cement based ink, and it’s application within the construction industry

2017 ◽  
Vol 120 ◽  
pp. 02003 ◽  
Author(s):  
Zhu Jianchao ◽  
Tao Zhang ◽  
Mansour Faried ◽  
Chen Wengang
2020 ◽  
Vol 992 ◽  
pp. 194-199
Author(s):  
V.V. Molodin ◽  
E.V. Vasenkov ◽  
P.L. Timin

The 3D printer technology of insulating walls, using the technology of one-stage polystyrene concrete laid with electric heating of the initial mixture is described. This technology test’s results, confirming the possibility of layer-by-layer molding of the insulated wall with the bead polystyrene’s filler mixture was subjected to electro thermal treatment directly in the working head of the 3D printer were carried out. Polystyrene swells, changing the thermal characteristics of the material and, at the same time, compacting the mixture, and the 3D printer forms a quick-hardening working layer of a wall, being built from the hot mixture that is losing its mobility. The technological features of molding a wall of one-stage polystyrene concrete by a 3D printer, the uniform distribution of polystyrene granules in it and its strength were investigated. The possibility of the proposed technology using in the construction industry was proved.


Buildings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 144
Author(s):  
Guillermo Sotorrío Ortega ◽  
Javier Alonso Madrid ◽  
Nils O. E. Olsson ◽  
José Antonio Tenorio Ríos

The construction industry has embraced digitisation and industrialisation in response to the need to increase its productivity, optimise material consumption and improve workmanship. Additive manufacturing (AM), more widely known as 3D printing, has driven substantial progress in these respects in other industries, and a number of national and international projects have helped to introduce the technique to the construction industry. As with other innovative processes not covered by uniform standards, appropriate assessments and testing methodologies to control the quality of the 3D-printed end products, while not obligatory, are advisable. This article shows that regulation is not an obstacle to the use of an innovative product, such as 3D printing, by proposing quality-control tests and an assessment methodology, in the understanding that standardisation ensures the viability of a technology. The information, including the methods and results, is based on the authors’ experiences in the development of three research projects pertaining to 3D printing. This paper also discusses whether the performance of the materials used in 3D printing could be superior to traditional ones.


2019 ◽  
Vol 974 ◽  
pp. 107-112
Author(s):  
Valentina A. Poluektova

The molecular gravity and electrostatic repulsion energies were calculated taking into account the structural forces between the modified particles of the polymer-chalk dispersion, which was chosen as a model polymer-chalk system when studying systems for the innovative construction industry using additive technologies (3D printing). In the above calculations, differences for the studied systems are taken into account in such quantities as the complex Hamaker constant, the ionic strength of the solution, and the diffuse layer potential. The calculation of the total potential curves of modified and unmodified polymer-chalk dispersions and the contribution of various factors of aggregative stability analysis showed that as a result of the adsorption of modifier molecules on the particles surface, the action of molecular attraction forces is overcome by the combined action of electrostatic and adsorption-solvate factors of aggregative stability.


Author(s):  
Ji-Yeong, Yun Et.al

There has been an increase in demand for free-form building through the development of advanced technologies, and the fourth industrial revolution has become a worldwide trend, thereby changing the construction industry. In particular, in the case of the free-form architecture sector, development of 3D printing technologies has been ongoing for construction automation. According to such trends, this study develops an FCP production equipment using 3D printing technologies. The FCP production equipment in this study is made up of mould equipment and 3D printer. It is different from existing 3D printing technologies so in this study 3D concrete extrusion nozzle must be developed for producing FCP. Basic design suitable to such requirements is proposed.  Applicability of the proposed design is checked and the nozzle form is concretized to draft the final drawing. In this study, slit-type opening and closing device for accurate extrusion stoppage of concrete and screw-type nozzle for adjusting pressure and extrusion speed were applied for the nozzle. This is expected to be innovative technology for the FCP production sector.


Author(s):  
Елена Шорстова ◽  
Elena Shorstova ◽  
Сергей Клюев ◽  
Sergey Klyuev ◽  
Александр Клюев ◽  
...  

The article deals with the possibility of using 3D-printing in the construction industry. The analysis of the work performed in this area in the world. It also presents the main advantages of this method of construction of structures and buildings in general. Experimental studies were carried out using the components of the mixture: CEM I 42.5H Sebryakovcement, fine ground quartzitic sandstone with a specific surface of 700 m2/ kg using gypsum. Sand was used as fine aggregate. To make the mixture plasticity, such additives as plasticizer PFM-NLK and Murapor Kombi 756 were used. Basalt fiber was used as a reinforcing agent. Were developed compositions of the concrete mixture dispersed reinforced with basalt fiber. The work was able to develop the composition of fiber-reinforced concrete mixture, which can be used for 3D- printing. Its strength characteristics were determined, allowing to conclude that this composition meets all the requirements for this technology.


Author(s):  
Seyed M. Allameh ◽  
Roger Miller ◽  
Abdullah Almuzaini

Abstract This study presents the preliminary results of in-situ tests conducted on structural biomimicked composites built by 3D printing. Construction industry is looking seriously into 3D printed structures that can be incorporated into the conventional buildings. Further refinement of materials and processing will lead to the 3D printing of buildings in future. The advantages afforded by 3D printing are unrivaled, creating unprecedented opportunities to express art, economics, environmentally friendly designs, lightweight schemes, among many others. To determine the reliability and suitability of structural composites for use in construction, it is important to test these in shapes, and geometries that are appropriate to 3D printing. Combinatorial materials research allows the fabrication and in-situ testing of composites made by mix and match of various materials. This study focuses on the characterization of mechanical behavior of biomimicked composites fabricated by a 3D printer. To accomplish this, a meter-sized 3D printer was equipped with material dispensers as well as load sensors. Composites were made of various construction materials, adhesive, and reinforcement and subsequently tested by the same printer. The results are presented, and the implications of findings are discussed on their impact on the construction industry.


Author(s):  
Kho P. Verian ◽  
Scott R. Kowaleski ◽  
Matthew D. Carli ◽  
Randall P. Bright ◽  
Eerik Maandi ◽  
...  

Over the last few years, 3D construction printing (3DCP), also known as additive manufacturing (AM) or rapid prototyping (RP), has increased in popularity in the construction industry. This method, which integrates automation in the building process, provides advantages over conventional construction techniques. These advantages include reduced cost, increased time efficiency, and safer construction process. This paper provides information regarding test methods and the properties of a prototype cementitious material designed for 3DCP. The tests include the determination of fresh properties (i.e., flow, unit weight, viscosity, and set times) and mechanical properties (i.e., compressive, tensile, and shear strengths). The potential of the material is demonstrated by 3D printing a structure 100 cm (40 in.) long and 30 cm (12 in.) high. The potential application of a “cured-on-demand” technique in 3DCP is also demonstrated.


Sign in / Sign up

Export Citation Format

Share Document