Theoretical Concepts of the Modification Effect on the Interparticle Energy of the Polymer-Mineral Dispersions for 3D Printing

2019 ◽  
Vol 974 ◽  
pp. 107-112
Author(s):  
Valentina A. Poluektova

The molecular gravity and electrostatic repulsion energies were calculated taking into account the structural forces between the modified particles of the polymer-chalk dispersion, which was chosen as a model polymer-chalk system when studying systems for the innovative construction industry using additive technologies (3D printing). In the above calculations, differences for the studied systems are taken into account in such quantities as the complex Hamaker constant, the ionic strength of the solution, and the diffuse layer potential. The calculation of the total potential curves of modified and unmodified polymer-chalk dispersions and the contribution of various factors of aggregative stability analysis showed that as a result of the adsorption of modifier molecules on the particles surface, the action of molecular attraction forces is overcome by the combined action of electrostatic and adsorption-solvate factors of aggregative stability.

2017 ◽  
Vol 120 ◽  
pp. 02003 ◽  
Author(s):  
Zhu Jianchao ◽  
Tao Zhang ◽  
Mansour Faried ◽  
Chen Wengang

2021 ◽  
Vol 2103 (1) ◽  
pp. 012033
Author(s):  
M A Kotov ◽  
N A Monakhov ◽  
S A Poniaev ◽  
P A Popov ◽  
K V Tverdokhlebov

Abstract The features of 3D printing method for rapid prototyping and manufacturing of models for a pulsed high-speed gas-dynamic experiment are considered. Modern additive technologies allow the production of models. The basic properties of the materials and the advantages of 3D printing methods are described. The structure and properties of the obtained models can be unattainable using traditional manufacturing techniques. The design of the wind tunnel nozzle block is considered, which provides for the production of profiled contours using 3D printing. The advantages and disadvantages of use of such units on the shock tube are considered.


2020 ◽  
Vol 992 ◽  
pp. 194-199
Author(s):  
V.V. Molodin ◽  
E.V. Vasenkov ◽  
P.L. Timin

The 3D printer technology of insulating walls, using the technology of one-stage polystyrene concrete laid with electric heating of the initial mixture is described. This technology test’s results, confirming the possibility of layer-by-layer molding of the insulated wall with the bead polystyrene’s filler mixture was subjected to electro thermal treatment directly in the working head of the 3D printer were carried out. Polystyrene swells, changing the thermal characteristics of the material and, at the same time, compacting the mixture, and the 3D printer forms a quick-hardening working layer of a wall, being built from the hot mixture that is losing its mobility. The technological features of molding a wall of one-stage polystyrene concrete by a 3D printer, the uniform distribution of polystyrene granules in it and its strength were investigated. The possibility of the proposed technology using in the construction industry was proved.


Buildings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 144
Author(s):  
Guillermo Sotorrío Ortega ◽  
Javier Alonso Madrid ◽  
Nils O. E. Olsson ◽  
José Antonio Tenorio Ríos

The construction industry has embraced digitisation and industrialisation in response to the need to increase its productivity, optimise material consumption and improve workmanship. Additive manufacturing (AM), more widely known as 3D printing, has driven substantial progress in these respects in other industries, and a number of national and international projects have helped to introduce the technique to the construction industry. As with other innovative processes not covered by uniform standards, appropriate assessments and testing methodologies to control the quality of the 3D-printed end products, while not obligatory, are advisable. This article shows that regulation is not an obstacle to the use of an innovative product, such as 3D printing, by proposing quality-control tests and an assessment methodology, in the understanding that standardisation ensures the viability of a technology. The information, including the methods and results, is based on the authors’ experiences in the development of three research projects pertaining to 3D printing. This paper also discusses whether the performance of the materials used in 3D printing could be superior to traditional ones.


2021 ◽  
Vol 40 (2) ◽  
pp. 5-12
Author(s):  
Stepan A. Peleshok ◽  
Aleksandr Ya. Fisun ◽  
Andrey V. Morozov ◽  
Sergey V. Kalinin ◽  
Marina I. Eliseeva

In order to determine the features and main ways of using additive technologies within the framework of the scientific and business program of the International Military-Technical Forum Army-2020, a round table was held. In recent years, additive technologies have made a significant leap forward thanks to the improvement of electronic computing technology and software (software), the creation of a wide range of 3D printers that print using various modern methods and materials. The following industries are leading in the development of 3D printing as consumers: aircraft construction (33%), nuclear industry (30%), military-industrial complex (13%), as well as medicine (11%), education, etc. The summary contains part of the speeches of the speakers of the scientific event on the use of additive technologies in education and medicine. To achieve Russias position as one of the leaders in the global technology market, a network of educational institutions is developing and the provision of educational institutions with 3D printers. The countrys universities and, in particular, Bauman Moscow State Technical University began to develop professional competencies among graduates in the field of additive technologies, materials and equipment. Other universities use reverse engineering for research and development, the launch of new production. In medicine, models of complex elements of the human skeleton are created, in particular, individual bones and various projections of the skull, bones of the spine, hand and foot, as well as some models of organs from hard and semi-soft plastics to improve the educational process. The capabilities of 3D printing of mock-ups of organ pathologies are used for preoperative planning and rehearsal of an operation in thoracic and cardiovascular surgery, as well as for training students and doctors, modeling hemodynamics and testing medical devices. Alternative materials and methods for making splints and splints for fixing injuries and diseases of the upper limb are considered. To create ceramic products in dentistry, instead of injection molding and pressing, the technology of Lithography-based Ceramics Manufacturing printing with a suspension on foreign equipment was proposed. Three-dimensional printing has partially filled the need for personal protective equipment against the new coronavirus infection, in particular through the creation of reusable masks, various adapters, holders of face masks, linings on door handles, etc. The participants of the round table agreed that the results of scientific and innovative activities in the field of additive technologies should be tested, implemented and used in the educational process, practical activities, including military medicine (bibl.: 6 refs).


Author(s):  
Ji-Yeong, Yun Et.al

There has been an increase in demand for free-form building through the development of advanced technologies, and the fourth industrial revolution has become a worldwide trend, thereby changing the construction industry. In particular, in the case of the free-form architecture sector, development of 3D printing technologies has been ongoing for construction automation. According to such trends, this study develops an FCP production equipment using 3D printing technologies. The FCP production equipment in this study is made up of mould equipment and 3D printer. It is different from existing 3D printing technologies so in this study 3D concrete extrusion nozzle must be developed for producing FCP. Basic design suitable to such requirements is proposed.  Applicability of the proposed design is checked and the nozzle form is concretized to draft the final drawing. In this study, slit-type opening and closing device for accurate extrusion stoppage of concrete and screw-type nozzle for adjusting pressure and extrusion speed were applied for the nozzle. This is expected to be innovative technology for the FCP production sector.


Sign in / Sign up

Export Citation Format

Share Document