scholarly journals A case study of the plasma in the magneto-sheath using the numerical magnetosheath-magnetosphere model and THEMIS measure-ments

2018 ◽  
Vol 145 ◽  
pp. 03004
Author(s):  
Polya Dobreva ◽  
Olga Nitcheva ◽  
Monio Kartalev

This paper presents a case study of the plasma parameters in the magnetosheath, based on THEMIS measurements. As a theoretical tool we apply the self-consistent magnetosheath-magnetosphere model. A specific aspect of the model is that the positions of the bow shock and the magnetopause are self-consistently determined. In the magnetosheath the distribution of the velocity, density and temperature is calculated, based on the gas-dynamic theory. The magnetosphere module allows for the calculation of the magnetopause currents, confining the magnetic field into an arbitrary non-axisymmetric magnetopause. The variant of the Tsyganenko magnetic field model is applied as an internal magnetic field model. As solar wind monitor we use measurements from the WIND spacecraft. The results show that the model quite well reproduces the values of the ion density and velocity in the magnetosheath. The simlicity of the model allows calulations to be perforemed on a personal computer, which is one of the mean advantages of our model.

2018 ◽  
Vol 145 ◽  
pp. 03003
Author(s):  
Polya Dobreva ◽  
Monio Kartalev ◽  
Olga Nitcheva ◽  
Natalia Borodkova ◽  
Georgy Zastenker

We investigate the behaviour of the plasma parameters in the magnetosheath in a case when Interball-1 satellite stayed in the magnetosheath, crossing the tail magnetopause. In our analysis we apply the numerical magnetosheath-magnetosphere model as a theoretical tool. The bow shock and the magnetopause are self-consistently determined in the process of the solution. The flow in the magnetosheath is governed by the Euler equations of compressible ideal gas. The magnetic field in the magnetosphere is calculated by a variant of the Tsyganenko model, modified to account for an asymmetric magnetopause. Also, the magnetopause currents in Tsyganenko model are replaced by numericaly calulated ones. Measurements from WIND spacecraft are used as a solar wind monitor. The results demonstrate a good agreement between the model-calculated and measured values of the parameters under investigation.


Author(s):  
V Lesur ◽  
F Vervelidou

Summary We investigate to which extent the radially averaged magnetisation of the lithosphere can be recovered from the information content of a spherical harmonic model of the generated magnetic field when combined with few simple hypotheses. The results obtained show firstly that a hypothesis of magnetisation induced by a field of internal origin, even over a localised area, is not sufficient to recover uniquely the radially averaged magnetisation and, secondly, that this magnetisation can be recovered when a constant magnetisation direction is assumed. An algorithm to recover the magnetisation direction and distribution is then described and tested over a synthetic example. It requires to introduce a cost function that vanishes when estimated in a system of coordinates with its Z axis aligned with the magnetisation direction. Failing to find a vanishingly small value for the cost function is an indication that a constant magnetisation direction is not a valid hypothesis for the studied magnetic field model. The range of magnetisation directions that are compatible with the magnetic field model and a given noise level, can also be estimated. The whole process is illustrated by analysing a local, isolated maximum of the Martian magnetic field.


1996 ◽  
Vol 160 ◽  
pp. 49-50
Author(s):  
Naoki Itoh ◽  
Takemi Kotouda

Monte Carlo simulations of the evolution of pulsars are carried out in order to compare with the recent measurement of the pulsar transverse velocity by Lyne & Lorimer (1994). The new electron density distribution model of Taylor & Cordes (1993) is adopted in the simulation. Accurate pulsar orbits in the Galactic gravitational field are calculated. It is found that the constant magnetic field model of pulsars can account for the new measurement of the pulsar transverse velocity and the apparent correlation between the strength of the magnetic field and the transverse velocity of the pulsars. The present finding confirms the validity of the constant magnetic field model of pulsars and consolidates the idea that the apparent correlation between the strength of the magnetic field and the transverse velocity of the pulsars is caused by observational selection effects.


2018 ◽  
Author(s):  
Foteini Vervelidou ◽  
Erwan Thébault ◽  
Monika Korte

Abstract. We derive a lithospheric magnetic field model up to equivalent Spherical Harmonic degree 1000 over southern Africa. We rely on a joint inversion of satellite, near-surface and ground magnetic field data. The input data set consists of magnetic field vector measurements from the CHAMP satellite, across-track magnetic field differences from the Swarm mission, the World Digital Magnetic Anomaly Map and magnetic field measurements from repeat stations and three local INTERMAGNET observatories. For the inversion scheme, we use the Revised-Spherical Cap Harmonic Analysis (R-SCHA), a regional analysis technique able to deal with magnetic field measurements obtained at different altitudes. The model is carefully assessed and displayed at different altitudes and its spectral content is compared to high resolution global lithospheric field models. By comparing the shape of its spectrum to a statistical power spectrum of Earth's lithospheric magnetic field, we infer the mean magnetic thickness and the mean magnetization over southern Africa.


2001 ◽  
Vol 8 (3) ◽  
pp. 167-174 ◽  
Author(s):  
D. F. Vogl ◽  
H. K. Biernat ◽  
N. V. Erkaev ◽  
C. J. Farrugia ◽  
S. Mühlbachler

Abstract. Taking into account the pressure anisotropy in the solar wind, we study the magnetic field and plasma parameters downstream of a fast shock, as functions of upstream parameters and downstream pressure anisotropy. In our theoretical approach, we model two cases: a) the perpendicular shock and b) the oblique shock. We use two threshold conditions of plasma instabilities as additional equations to bound the range of pressure anisotropy. The criterion of the mirror instability is used for pressure anisotropy p \\perp /p\\parrallel > 1. Analogously, the criterion of the fire-hose instability is taken into account for pressure anisotropy p \\perp /p\\parrallel < 1. We found that the variations of the parallel pressure, the parallel temperature, and the tangential component of the velocity are most sensitive to the pressure anisotropy downstream of the shock. Finally, we compare our theory with plasma and magnetic field parameters measured by the WIND spacecraft.


2018 ◽  
Author(s):  
Ivan A. Pensionerov ◽  
Elena S. Belenkaya ◽  
Stanley W. H. Cowley ◽  
Igor I. Alexeev ◽  
Vladimir V. Kalegaev ◽  
...  

Abstract. One of the main features of Jupiter's magnetosphere is its equatorial magnetodisc, which significantly increases the field strength and size of the magnetosphere. Juno measurements of the magnetic field during the perijove 1 pass have allowed us to determine optimal parameters of the magnetodisc using the paraboloid magnetospheric magnetic field model, which employs analytic expressions for the magnetospheric current systems. Specifically within the model we determine the size of the Jovian magnetodisc and the magnetic field strength at its outer edge.


2004 ◽  
Vol 22 (8) ◽  
pp. 3009-3019 ◽  
Author(s):  
B. Lavraud ◽  
A. Fedorov ◽  
E. Budnik ◽  
A. Grigoriev ◽  
P. J. Cargill ◽  
...  

Abstract. The global characteristics of the high-altitude cusp and its surrounding regions are investigated using a three-year statistical survey based on data obtained by the Cluster spacecraft. The analysis involves an elaborate orbit-sampling methodology that uses a model field and takes into account the actual solar wind conditions and level of geomagnetic activity. The spatial distribution of the magnetic field and various plasma parameters in the vicinity of the low magnetic field exterior cusp are determined and it is found that: 1) The magnetic field distribution shows the presence of an intermediate region between the magnetosheath and the magnetosphere: the exterior cusp, 2) This region is characterized by the presence of dense plasma of magnetosheath origin; a comparison with the Tsyganenko (1996) magnetic field model shows that it is diamagnetic in nature, 3) The spatial distributions show that three distinct boundaries with the lobes, the dayside plasma sheet and the magnetosheath surround the exterior cusp, 4) The external boundary with the magnetosheath has a sharp bulk velocity gradient, as well as a density decrease and temperature increase as one goes from the magnetosheath to the exterior cusp, 5) While the two inner boundaries form a funnel, the external boundary shows no clear indentation, 6) The plasma and magnetic pressure distributions suggest that the exterior cusp is in equilibrium with its surroundings in a statistical sense, and 7) A preliminary analysis of the bulk flow distributions suggests that the exterior cusp is stagnant under northward IMF conditions but convective under southward IMF conditions.


2009 ◽  
Vol 24 (05) ◽  
pp. 1057-1067
Author(s):  
HE ZHANG ◽  
MARTIN BERZ

The Hefei light source (HLS) is a second generation synchrotron radiation light source, in which a superconducting wiggler is installed and operating. The effects of the wiggler on the beam dynamics on the HLS storage ring are studied, in order to make sure the wiggler can operate properly when the ring is working in the high brilliance mode. We generate a model of the magnetic field in the midplane of the wiggler. The 3D magnetic field model is also builded up by COSY infinity 9.0. Both the linear and nonlinear effects of the wiggler are discussed. The vertical tune is changed from 2.535 to 2.567 and the vertical beta function is heavily distorted, while a symplectic tracking study shows the dynamic aperture is only slightly affected by the wiggler. And the wiggler should be able to run on the high brilliance mode after the linear effects get compensated.


2020 ◽  
Author(s):  
Patrick Galopeau ◽  
Mohammed Boudjada

&lt;p&gt;We use five different Jupiter&amp;#8217;s magnetic field models (O6, VIP4, VIT4, VIPAL and JRM09) to investigate the angular distribution of the Jovian decameter radiation occurrence probability, relatively to the local magnetic field&lt;strong&gt; B&lt;/strong&gt; and its gradient &lt;strong&gt;&amp;#8711;&lt;/strong&gt;&lt;em&gt;B&lt;/em&gt; in the source region. The most recent model JRM09, proposed by Connerney et al. [&lt;em&gt;Geophys. Res. Lett.&lt;/em&gt;, &lt;em&gt;45&lt;/em&gt;, 2590-2596, 2018], was derived from Juno&amp;#8217;s first nine orbits observations. The JRM09 model confirms the results obtained several years ago using older models (O6, VIP4, VIT4 and VIPAL): the radio emission is beamed in a hollow cone presenting a flattening in a specific direction. The same assumptions were made as in the previous studies: the Jovian decameter radiation is supposed to be produced by the cyclotron maser instability (CMI) in a plasma where &lt;strong&gt;B&lt;/strong&gt; and&amp;#160;&lt;strong&gt;&amp;#8711;&lt;/strong&gt;&lt;em&gt;B&lt;/em&gt; are not parallel. As a consequence, the emission cone does not have any axial symmetry and then presents a flattening in a privileged direction. This flattening appears to be more important for the northern emission (34.8%) than for the southern emission (12.5%) probably due to the fact that the angle between the directions of &lt;strong&gt;B&lt;/strong&gt; and&amp;#160;&lt;strong&gt;&amp;#8711;&lt;/strong&gt;&lt;em&gt;B&lt;/em&gt; is greater in the North (~10&amp;#176;) than in the South (~4&amp;#176;).&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document