scholarly journals Kaolin as a Source of Silica and Alumina For Synthesis of Zeolite Y and Amorphous Silica Alumina

2018 ◽  
Vol 156 ◽  
pp. 05002 ◽  
Author(s):  
Endang Sri Rahayu ◽  
Gatot Subiyanto ◽  
Arief Imanuddin ◽  
Wiranto ◽  
Sabrina Nadina ◽  
...  

Kaolin is the clay mineral which containing silica (SiO2) and alumina (Al2O3) in a high percentage, that can be used as a nutrient in the synthesis of zeolites and amorphous silica alumina (ASA). The objective of this research is to convert the Belitung kaolin into silica and alumina as nutrients for the synthesis of zeolites and amorphous silica alumina, which are required in the preparation of the catalysts. Silica and alumina contained in the kaolin were separated by leaching the active kaolin called as metakaolin, using HCL solution, giving a solid phase rich silica and a liquid phase rich alumina. The solid phase rich silica was synthesized to zeolite Y by adding seed of the Y Lynde type, through the hydrothermal process with an alkaline condition. While, the liquid phase rich alumina was converted into an amorphous silica alumina through a co precipitation method. Characterization of zeolite and ASA were done using XRD, surface area and pore analyzer and SEM. The higher of alumina in liquid phase as a result of the rising molar of HCL in the leaching process was observed, but it didn’t work for its rising time. Products of ASA and zeolite Y were obtained by using liquid phase rich alumina and solid phase rich silica, respectively, which resulted through leaching metakaolin in 2.5 M HCl at temperature of 100° C for 2 hours.

2014 ◽  
Vol 896 ◽  
pp. 104-107 ◽  
Author(s):  
Poedji Loekitowati Hariani ◽  
Fahma Riyanti

CuFe2O4 nanoparticles were synthesized by co-precipitation method from the solution of CuCl2 and FeCl3 in alkaline condition. The prepared magnetic CuFe2O4 can be used to adsorb Cr (VI) ions from aqueous solution and separated from medium by magnetic technique. The characterization of CuFe2O4 with X-Ray diffraction (XRD) showed cubic units shells with diameter in the range 15-20 nm which obtained by Transmission Electron Microscope (TEM). The saturation of magnetization is around 13 emu g-1 measured with Vibrating Sample Magnetometer (VSM). Batch adsorption studies were carried out to optimize adsorption condition. Effective conditions for adsorption of Cr (VI) were found at the weight of CuFe2O4 was 1.0 g with contact time of 60 minutes and pH 3 with adsorption capacity 9.20 mg g-1.


2020 ◽  
Vol 3 (1) ◽  
pp. 30-33
Author(s):  
Muthulakshmi M ◽  
Madhumitha G

Nanotechnology is a field of applied science focused on design, synthesis and characterization of nanomaterials. The nickel and magnesium have improved their applications in transparent electrodes and nano electronics. In addition, magnesium oxide has moisture resistance and high melting point properties. In the present work has been carried out in the development of green crystalline powder of nickel doped magnesium oxide nanoparticles by Co-precipitation method, from the mixture of nickel chloride and magnesium chloride with KOH as solvent. From the XRD results, crystalline size of the particle can be observed. Spherical structure of Ni doped MgO nanoparticles were indicated by SEM results and powdered composition of samples were obtained from FTIR. EDAX represents the peak composition of the nanoparticle. The above analytical techniques have confirmed that the Ni doped MgO nanoparticles obtained from the mixture of NiCl2 and MgCl2.


2012 ◽  
Vol 116 (40) ◽  
pp. 21416-21429 ◽  
Author(s):  
Emiel J.M. Hensen ◽  
Dilip G. Poduval ◽  
Volkan Degirmenci ◽  
D.A J. Michel Ligthart ◽  
Wenbin Chen ◽  
...  

MRS Advances ◽  
2017 ◽  
Vol 2 (64) ◽  
pp. 4025-4030 ◽  
Author(s):  
T. Kryshtab ◽  
H. A. Calderon ◽  
A. Kryvko

ABSTRACTThe microstructure of Ni-Mg-Al mixed oxides obtained by thermal decomposition of hydrotalcite-like compounds synthesized by a co-precipitation method has been studied by using X-ray diffraction (XRD) and atomic resolution transmission electron microscopy (TEM). XRD patterns revealed the formation of NixMg1-xO (x=0÷1), α-Al2O3 and traces of MgAl2O4 and NiAl2O4 phases. The peaks profile analysis indicated a small grain size, microdeformations and partial overlapping of peaks due to phases with different, but similar interplanar spacings. The microdeformations point out the presence of dislocations and the peaks shift associated with the presence of excess vacancies. The use of atomic resolution TEM made it possible to identify the phases, directly observe dislocations and demonstrate the vacancies excess. Atomic resolution TEM is achieved by applying an Exit Wave Reconstruction procedure with 40 low dose images taken at different defocus. The current results suggest that vacancies of metals are predominant in MgO (NiO) crystals and that vacancies of Oxygen are predominant in Al2O3 crystals.


2017 ◽  
Vol 43 (15) ◽  
pp. 12120-12125 ◽  
Author(s):  
S.A.N.H. Lavasani ◽  
O. Mirzaee ◽  
H. Shokrollahi ◽  
A.K. Moghadam ◽  
M. Salami

2018 ◽  
Vol 33 (4) ◽  
pp. 501-513 ◽  
Author(s):  
Hossein Semyari ◽  
Majid Salehi ◽  
Ferial Taleghani ◽  
Arian Ehterami ◽  
Farshid Bastami ◽  
...  

In this study, hydroxyapatite nanoparticles containing 10% doxycycline, a structural isomer of tetracycline, was prepared by the co-precipitation method. It was added to collagen solution for the preparation of the scaffold with freeze-casting method in order to develop a composite scaffold with both antibacterial and osteoinductive properties for repairing bone defects. The scaffolds were evaluated regarding their morphology, porosity, degradation and cellular response. The scaffolds for further investigation were added in a rat calvaria defect model. The study showed that after eight weeks, the bone formation was relatively higher in the collagen/nano-hydroxyapatite/doxycycline group with completely filled defect when compared with other groups. Histopathological evaluation showed that the defect in the collagen/nano-hydroxyapatite/doxycycline group was fully replaced by the new bone and connective tissue. Our results provide evidence supporting the possible applicability of doxycycline-containing scaffolds for successful bone regeneration.


2018 ◽  
Vol 4 (4) ◽  
pp. 151-162
Author(s):  
Dasari Ayodhya ◽  
Guttena Veerabhadram

We report the simple synthesis of zinc sulfide nanoparticles (ZnSNPs) by a co-precipitation method using Schiff base, (2-[(4-methoxy-phenylimino)-methyl]-4-nitro phenol) as a capping agent. Here, Schiff base is also used as N, O-donor ligand to control the morphology of NPs and fluorescence interactions. The formation of ZnSNPs and their optical, structural, thermal properties and morphologies were studied by means of UV–vis DRS, fluorescence, FTIR, XRD, SEM, TEM, zeta potential and TGA. The optical properties and quantum confinement effect of the products were confirmed by means of spectroscopic measurements. XRD and TEM image shows that the synthesized ZnSNPs have cubic structures with a diameter of about less than 10 nm. The prepared ZnSNPs exhibited as a selective probe detection of Fe3+, Cr2+ and Cd2+ ions by fluorometrically and the emission band which disappears in the presence of increasing concentrations of Fe3+, Cr2+ and Cd2+ ions. Based on the fluorescence quenching of the NPs in the presence of metal ion of interest, the feasibility of their determinations was examined according to the Stern-Volmer equation. Our work suggested that Schiff base capped ZnSNPs could be a potential selective sensor in the detection of heavy metal ions.


Sign in / Sign up

Export Citation Format

Share Document