scholarly journals Experimental and computational comparative study of the specimens loaded by bending and torsion

2018 ◽  
Vol 157 ◽  
pp. 02016 ◽  
Author(s):  
Lenka Jakubovičová ◽  
Milan Vaško ◽  
Milan Sága ◽  
Peter Kopas

The article presents the theoretical and computational analysis of the fatigue tested specimens loaded by bending and torsion. The testing device allows loading by constant turn of the clamping parts. The stress and strain magnitude in test depends on the material characteristics and shape of the specimen. The calculations are realized by finite element method (FEM). The obtained results are verified with the experimental measurement applying the optical system ARAMIS.

2021 ◽  
Vol 1034 (1) ◽  
pp. 012027
Author(s):  
Abdi Ismail ◽  
Achmad Zubaydi ◽  
Bambang Piscesa ◽  
Ervan Panangian ◽  
Rizky Chandra Ariesta ◽  
...  

Author(s):  
Iskandar Hasanuddin ◽  
Husaini ◽  
M. Syahril Anwar ◽  
B.Z. Sandy Yudha ◽  
Hasan Akhyar

Helix ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 4104-4109
Author(s):  
Ali Akbar Mashayekh

Author(s):  
Yanzhong Wang ◽  
Kai Yang ◽  
Wen Tang

Abstract A comparative analysis of the structural form and gear type of the gear-driven fan engine reducer is made. Comparative analysis of different transmission structure forms and different gear types, the results show that the star-shaped structure with herringbone gear is more suitable for aero-engine fan reducer, especially in the case of high output speed and high gear bearing capacity. According to the design conditions, the basic parameters of the gear system of the transmission system were preliminarily designed. The gear loading calculations were carried out by finite element method and ISO method respectively, and the root bending stress and tooth surface contact stress obtained by the two methods were compared and analyzed. The results show that the parameters of the fan reducer gear system designed using ISO standards are more conservative. The gear stress obtained by the finite element method simulation is close to the nominal stress calculated in the ISO standard, which verifies the rationality of the finite element model. On this basis, the gear shaping parameters are designed according to the stress and strain conditions of the finite element loading contact analysis, and the appropriate shaping parameters are obtained. Based on the stress and strain results of the finite element loading contact analysis, we designed the gear modification parameters and obtained the appropriate modification parameters.


Author(s):  
Boris Margolin ◽  
Vladimir Nikolaev ◽  
Valentin Fomenko ◽  
Lev Ryadkov

Application of pre-cracked Charpy specimens with various depth of side-grooves is considered for fracture toughness prediction. Recommendations for prediction of temperature dependence of fracture toughness are given when using small-sized specimens with deep side-grooves. Test results of about 500 specimens, cut from materials with various degrees of embrittlement are presented. On the basis of 3D calculations by finite element method the procedure used in standard ASTM E 1921 for calculation of Ke and J, is developed for bending specimens with deep side-grooves. An attempt is undertaken to explain the obtained experimental data from the standpoints of the available criteria of brittle fracture based on calculation analysis of stress and strain fields (SSF) of SE(B)-10 specimens with various depths of side-grooves.


Sign in / Sign up

Export Citation Format

Share Document