scholarly journals The damage analysis of the reinforced concrete beam and the prestressed reinforced concrete beam

2018 ◽  
Vol 157 ◽  
pp. 02055
Author(s):  
Milan Vaško ◽  
Marián Handrik ◽  
Matej Rác ◽  
Vladislav Baniari ◽  
Ján Kortiš ◽  
...  

The paper deals with the finite-element analysis of damage in reinforced concrete beam and prestressed reinforced concrete beam. The steel reinforcement is modeled using non-linear rebar elements and an elastoplastic model of the reinforcement is considered. The initial prestress is defined in the ropes that are used to create the prestressed reinforced concrete beam. These ropes are also modeled using non-linear rebar elements and the elastoplastic material model. Created computational model allows the damage modeling of the reinforced and pre-stressed reinforced concrete beams under static loading.

2013 ◽  
Vol 438-439 ◽  
pp. 663-666
Author(s):  
Xin Zhong Zhang ◽  
Lei Lei Liu ◽  
Ke Dong Tang

This paper mainly uses ANSYS, the finite element analysis software, to make nonlinear analysis of reinforced concrete beam. The model simulating the test process was established, the calculation results of ANSYS are compared with the experimental results. The comparison shows that ANSYS analysis results are similar to experimental results, which indicates ANSYS analysis software can be used to simulate the mechanical property of reinforced concrete structures.


2019 ◽  
Vol 5 (7) ◽  
pp. 1631-1646
Author(s):  
Abdulsamee M. Halahla

Experimental testing was used widely as a means to investigate the behavior of these individual elements and the effects of concrete strength under different loading types. While this method represents real life responses, it is very time consuming and the use of materials can be quite costly. Recently, the use of finite element analysis (FEA) has increased due to advances in knowledge and the capabilities of computer hardware and software. The utilization of computer software to model the structural elements has become much faster and extremely cost-effective. The finite element software ANSYS 11.0 is used for modeling and analysis by conducting non-linear static analysis. This research work used nonlinear finite element analysis for a reinforced concrete beam in order to show the potential of the FEA for studying the behavior of reinforced concrete elements, and to understand their load-deflection response along with the crack evolution. For concrete a solid 65 element was used, while for the reinforcement steel bar link 8 elements were used. For the material constitutive model linear and multi-linear behavior for concrete were considered, while linear and bilinear behavior were considered for the reinforcement bar.  A reinforced concrete beam model is studied and compared with experimental data from the literature. The characteristic points on the load-deflection response curve predicted using finite element analysis, were compared to the theoretical limit (hand-calculated) results. Conclusions were then drawn as to the accuracy of using finite element modeling for the analysis of reinforced concrete elements. The results showed a good match to experimental and hand calculations.


Author(s):  
Kingshuk Mukherjee

Abstract: Understanding the response of concrete structural components such as beams, columns, walls during loading is indispensable for the development of safeand efficient structures. The present report deals with the non-linear static analysis of a Reinforced Concrete (RC) beam, having dimensions 4000mmX400mmX 250mm, with 4 nos. of 16mm diameter bar as main reinforcements, 8mm diameter at 200mm c/c as shear reinforcement, with two faces of the beam as fixed modeled and analyzed when subjected to two point loads at one-third span from each fixed support using the Finite Element Analysis software Ansys. The behavior of the analyzed beam has been observed in terms of flexural behavior, load-deflection responses, and crack pattern for various loading conditions until failure load. Keywords: Finite element analysis, ANSYS, flexural behavior, Reinforced Concrete (RC) beams, material non- linearity, shear reinforcement.


2011 ◽  
Vol 71-78 ◽  
pp. 514-518
Author(s):  
Shuang Liu ◽  
Chao Lv

To study the reinforced concrete beam stress performance under ultra-low temperature, Monotonic static load tests of 6 reinforced concrete beams were conducted at a temperature range from -180 oC to -40°C by using home-made jig and fixture for low temperature. The failure modes and the mechanical properties of the reinforced concrete beams under low temperature were investigated. The test results showed that both the bearing capacity and the stiffness of the beams increased with the decrease of the temperature. Based on the material constitutive and mechanism at ultra-low temperature, the numerical simulations are implemented and component test is expanded by using DIANA software environment.


2012 ◽  
Vol 166-169 ◽  
pp. 1769-1772
Author(s):  
Yu Wang ◽  
Yan Ni Shen ◽  
Jun Ma

Finite element analysis model of reinforced concrete beam with CFRP by ANSYS were built in this paper. Through finite element method analysis of comparing the concrete beam with and without CFRP , some conclusions are given in the paper; the Fatigue Mechanism was studied , and obtained the raise the level of fatigue life of reinforced concrete beam with CFRP .The result shows CFRP can increase greatly its fatigue life and improve effectually the ductility of the structure.


2021 ◽  
Vol 248 ◽  
pp. 03081
Author(s):  
He Huang ◽  
Chuanlong Zou ◽  
Xiaoguang Liang ◽  
Shan Chen ◽  
Mingmao Li

In order to study the concrete damage in sticked side-plated reinforced concrete beam under static load, a common reinforced concrete beam and a sticked side-plated reinforced concrete beam were designed to conduct finite element comparison experiments. The results show that compared with ordinary reinforced concrete beams, the bearing capacity of sticked side-plated reinforced concrete beam is significantly improved, and the range of concrete tensile damage is significantly reduced. It further verifies that the sticked side-plated reinforced method is effective in reducing concrete tensile damage.


2018 ◽  
Vol 21 (13) ◽  
pp. 1977-1989 ◽  
Author(s):  
Tengfei Xu ◽  
Jiantao Huang ◽  
Arnaud Castel ◽  
Renda Zhao ◽  
Cheng Yang

In this article, experiments focusing at the influence of steel–concrete bond damage on the dynamic stiffness of cracked reinforced concrete beams are reported. In these experiments, the bond between concrete and reinforcing bar was damaged using appreciate flexural loads. The static stiffness of cracked reinforced concrete beam was assessed using the measured load–deflection response under cycles of loading and unloading, and the dynamic stiffness was analyzed using the measured natural frequencies with and without sustained loading. Average moment of inertia model (Castel et al. model) for cracked reinforced beams by taking into account the respective effect of bending cracks (primary cracks) and the steel–concrete bond damage (interfacial microcracks) was adopted to calculate the static load–deflection response and the natural frequencies of the tested beams. The experimental results and the comparison between measured and calculated natural frequencies show that localized steel–concrete bond damage does not influence remarkably the dynamic stiffness and the natural frequencies both with and without sustained loading applied. Castel et al. model can be used to calculate the dynamic stiffness of cracked reinforced concrete beam by neglecting the effect of interfacial microcracks.


2012 ◽  
Vol 214 ◽  
pp. 306-310
Author(s):  
Han Chen Huang

This study proposes a artificial neural network with genetic algorithm (GA-ANN) for predicting the torsional strength of reinforced concrete beam. Genetic algorithm is used to the optimal network structure and parameters. A database of the torsional failure of reinforced concrete beams with a rectangular section subjected to pure torsion was obtained from existing literature for analysis. This study compare the predictions of the GA-ANN model with the ACI 318 code used for analyzing the torsional strength of reinforced concrete beam. The results show that the proposed model provides reasonable predictions of the ultimate torsional strength of reinforced concrete beams and offers superior torsion accuracy compared to that of the ACI 318-89 equation.


2011 ◽  
Vol 287-290 ◽  
pp. 1896-1901
Author(s):  
Zhi Kun Guo ◽  
Wan Xiang Chen ◽  
Qi Fan Wang ◽  
Yu Huang ◽  
Chao Pu Li ◽  
...  

The bearing capacities of one-way reinforced concrete beams with elastic supports are investigated in this paper. According to the nonlinear characteristics of the beams, the basic equations based on plastic theory of concrete are derived by considering the in-plane force effects that aroused by the constraints of supports when the beams deforming. It is indicated that the calculation results are in good agreement with experimental datum, and the influences of different supports on the bearing capacities of the beams are quantitatively given for the first time.


2020 ◽  
Vol 23 (9) ◽  
pp. 1934-1947
Author(s):  
Dapeng Chen ◽  
Li Chen ◽  
Qin Fang ◽  
Yuzhou Zheng ◽  
Teng Pan

The bending behavior of reinforced concrete beams under uniform pressure is critical for the research of the blast-resistance performance of structural components under explosive loads. In this study, a bending test of five reinforced concrete beams with the dimensions of 200 mm (width) × 200 mm (depth) × 2500 mm (length) under uniform load produced by a specific cylinder-shaped rubber bag filled with air or water was conducted to investigate their flexural performances. An air bag load was applied to three of the reinforced concrete beams, a water bag load was applied to one reinforced concrete beam, and the remainder beam was subjected to the 4-point bending load. The experimental results highlighted that the air bag and water bag loading methods can be used to effectively apply uniform loads to reinforced concrete beams. Moreover, the stiffness of the air bag was improved by 123% in accordance with the initial pressure increases from 0.15 to 0.45 MPa. In addition, a finite element model of the test loading system was established using ABAQUS/Standard software. Moreover, the critical factors of the air bag loading method were analyzed using the numerical model. The calculated results were found to be in good agreement with the test data. The established finite element model can therefore be used to accurately simulate the action performances of the uniform loading technique using rubber bags filled with air or water.


Sign in / Sign up

Export Citation Format

Share Document