scholarly journals Calculation of stress in FGM beams

2018 ◽  
Vol 157 ◽  
pp. 06006
Author(s):  
Justín Murín ◽  
Juraj Hrabovský ◽  
Vladimír Kutiš

Content of the paper is oriented to calculation of elastic normal stress in the Functionally Graded Beams (FGM). Spatial variation of material properties is considered in the lateral, transversal and longitudinal direction of the straight beam. The displacements and internal forces are calculated using our new FGM finite beam element. Heterogeneous material properties are homogenized by extended mixture rules, laminate theory and reference volume element (RVE). Obtained results by our approach are evaluated and compared with the ones obtained by the 3D solid finite elements.

2015 ◽  
Vol 65 (1) ◽  
pp. 27-56 ◽  
Author(s):  
J. Murín ◽  
M. Aminbaghai ◽  
J. Hrabovský

Abstract In this contribution, results of elastostatic analysis of spatial composite beam structures are presented using our new beam finite element of double symmetric cross-section made of a Functionally Graded Material (FGM). Material properties of the real beams vary continuously in the longitudinal direction while variation with respect to the transversal and lateral directions is assumed to be symmetric in a continuous or discontinuous manner. Continuously longitudinal varying spatial Winkler elastic foundations (except the torsional foundation) and the effect of axial and shear forces are considered as well. Homogenization of spatially varying material properties to effective quantities with a longitudinal variation is done by the multilayer method (MLM). For the homogenized beam finite element the local stiffness matrix is established by means of the transfer matrix method. By the conventional finite element procedure, the global element stiffness matrix and the global system of equation for the beam structure are established for calculation of the global displacement vector. The secondary variables (internal forces and moments) are then calculated by means of the transfer relations on the real beams. Further, the mechanical stress in the real beams are calculated. Finally, the numerical experiments are carried out concerning the elastic-static analysis of the single FGM beams and beam structures in order to show the possibilities of our approach.


2010 ◽  
Vol 123-125 ◽  
pp. 280-283
Author(s):  
Chang Yull Lee ◽  
Ji Hwan Kim

The post-buckling of the functionally graded composite plate under thermal environment with aerodynamic loading is studied. The structural model has three layers with ceramic, FGM and metal, respectively. The outer layers of the sandwich plate are different homogeneous and isotropic material properties for ceramic and metal. Whereas the core is FGM layer, material properties vary continuously from one interface to the other in the thickness direction according to a simple power law distribution in terms of the volume fractions. Governing equations are derived by using the principle of virtual work and numerical solutions are solved through a finite element method. The first-order shear deformation theory and von-Karman strain-displacement relations are based to derive governing equations of the plate. Aerodynamic effects are dealt by adopting nonlinear third-order piston theory for structural and aerodynamic nonlinearity. The Newton-Raphson iterative method applied for solving the nonlinear equations of the thermal post-buckling analysis


2018 ◽  
Vol 18 (3) ◽  
pp. 451-475 ◽  
Author(s):  
Alexandre Ern ◽  
Jean-Luc Guermond

AbstractWe devise a novel framework for the error analysis of finite element approximations to low-regularity solutions in nonconforming settings where the discrete trial and test spaces are not subspaces of their exact counterparts. The key is to use face-to-cell extension operators so as to give a weak meaning to the normal or tangential trace on each mesh face individually for vector fields with minimal regularity and then to prove the consistency of this new formulation by means of some recently-derived mollification operators that commute with the usual derivative operators. We illustrate the technique on Nitsche’s boundary penalty method applied to a scalar diffusion equation and to the time-harmonic Maxwell’s equations. In both cases, the error estimates are robust in the case of heterogeneous material properties. We also revisit the error analysis framework proposed by Gudi where a trimming operator is introduced to map discrete test functions into conforming test functions. This technique also gives error estimates for minimal regularity solutions, but the constants depend on the material properties through contrast factors.


Author(s):  
P. K. Karsh ◽  
Bindi Thakkar ◽  
R. R. Kumar ◽  
Vaishali ◽  
Sudip Dey

Purpose: To investigate the probabilistic low-velocity impact of functionally graded (FG) plate using the MARS model, considering uncertain system parameters. Design/methodology/application: The distribution of various material properties throughout FG plate thickness is calculated using power law. For finite element (FE) formulation, isoparametric elements with eight nodes are considered, each component has five degrees of freedom. The combined effect of variability in material properties such as elastic modulus, modulus of rigidity, Poisson’s ratio, and mass density are considered. The surrogate model is validated with the FE model represented by the scatter plot and the probability density function (PDF) plot based on Monte Carlo simulation (MCS). Findings: The outcome of the degree of stochasticity, impact angle, impactor’s velocity, impactor’s mass density, and point of impact on the maximum value of contact force (CFmax ), plate deformation (PDmax), and impactor deformation (IDmax ) are determined. A convergence study is also performed to determine the optimal number of the constructed MARS model’s sample size. Originality/value: The results illustrate the significant effects of uncertain input parameters on FGM plates’ low-velocity impact responses by employing a surrogate-based MARS model.


2012 ◽  
Vol 166-169 ◽  
pp. 824-827 ◽  
Author(s):  
Y Z Yang

This paper presents symplectic method for the derivation of exact solutions of functionally graded piezoelectric beam with the material properties varying exponentially both along the axial and transverse coordinates. In the approach, the related equations and formulas are developed in terms of dual equations, which can be solved by variables separation and symplectic expansion in Hamiltonian system. To verify advantages of the method, numerical examples of bi-directional functionally piezoelectric beam are discussed.


2018 ◽  
Vol 35 (4) ◽  
pp. 441-454 ◽  
Author(s):  
M. Shishesaz ◽  
M. Hosseini

ABSTRACTIn this paper, the mechanical behavior of a functionally graded nano-cylinder under a radial pressure is investigated. Strain gradient theory is used to include the small scale effects in this analysis. The variations in material properties along the thickness direction are included based on three different models. Due to slight variations in engineering materials, the Poisson’s ratio is assumed to be constant. The governing equation and its corresponding boundary conditions are obtained using Hamilton’s principle. Due to the complexity of the governed system of differential equations, numerical methods are employed to achieve a solution. The analysis is general and can be reduced to classical elasticity if the material length scale parameters are taken to be zero. The effect of material indexn, variations in material properties and the applied internal and external pressures on the total and high-order stresses, are well examined. For the cases in which the applied external pressure at the inside (or outside) radius is zero, due to small effects in nano-cylinder, some components of the high-order radial stresses do not vanish at the boundaries. Based on the results, the material inhomogeneity indexn, as well as the selected model through which the mechanical properties may vary along the thickness, have significant effects on the radial and circumferential stresses.


Author(s):  
Vahid Movahedfar ◽  
Mohammad M Kheirikhah ◽  
Younes Mohammadi ◽  
Farzad Ebrahimi

Based on modified strain gradient theory, nonlinear vibration analysis of a functionally graded piezoelectric doubly curved microshell in thermal environment has been performed in this research. Three scale parameters have been included in the modeling of thin doubly curved microshell in order to capture micro-size effects. Graded material properties between the top and bottom surfaces of functionally graded piezoelectric doubly curved microshell have been considered via incorporating power-law model. It is also assumed that the microshell is exposed to a temperature field of uniform type and the material properties are temperature-dependent. By analytically solving the governing equations based on the harmonic balance method, the closed form of nonlinear vibration frequency has been achieved. Obtained results indicate the relevance of calculated frequencies to three scale parameters, material gradation, electrical voltage, curvature radius, and temperature changes.


Author(s):  
Ahmad Yavari ◽  
Mohammad Hossein Abolbashari ◽  
Behrooz Hassani

Analysis of elastic wave propagation in a hollow cylinder with two-dimensional (2D) functionally graded material (FGM) and the curved outer surface under internal moving shock loading is the subject of this study. In the proposed method, there is no restriction on the distribution of material properties, the shape of the outer surface, and the applied shock loading. They are treated with non-uniform rational B-spline (NURBS). The isogeometric approach is developed for solving the problem to ensure precise modeling of the geometry. Also, the Newmark approach is used for full discretization of the isogeometric equations. The distributions of all elastic field quantities are determined for two types of material distributions and shock loadings. The effects of shock loadings, the shape of the outer surface, and the material distribution on the elastic wave are thoroughly examined. Propagation, reflections, and propagation speed inside the hollow cylinder are investigated. It is found that the propagation speeds of elastic waves have a distribution associated with the distribution of the material properties. Also, the shape of the outer surface can affect the amplitude of the elastic wave and the locations of concentration stress. It is concluded that the sonic boom phenomenon occurs in the solids as well as in the air.


Sign in / Sign up

Export Citation Format

Share Document