scholarly journals Structural analysis for in-service gas pipeline lowering using numerical method

2018 ◽  
Vol 159 ◽  
pp. 01058
Author(s):  
Mochamad Safarudin ◽  
Joga Dharma Setiawan

Construction of new highways, buildings, airport runways and other facilities is often planned at locations where aboveground pipelines are present. Relocating such lines can be extremely expensive in terms of shutdown time and new pipeline materials. Lowering this existing pipeline can have big cost benefits. The line can be lowered while remaining in service with no lost production and the cost of such lowering an existing pipeline section is relatively cheap. In this paper, the calculation method with both analytically and numerically are discussed and explained in a 28 in pipeline lowering process while keep the pipeline is safe and still in-service.

1991 ◽  
Vol 24 (9) ◽  
pp. 31-43 ◽  
Author(s):  
M. D. Burgess

A harsh climate, extended dry periods and relatively expensive water resources underly the potential for effluent reuse in the Northern Territory, Australia. The cost of supplying potable water and the potential offsetting effects of utilising sewage effluent are reviewed. The need to firmly establish the true cost to the community of different supply options is identified. Major cost benefits accrue where reuse will enable deferment of either significant potable source augmentation or sewage treatment works upgrading and where horticultural prospects are good at a reuse site close to the treatment works. An overall strategy plan for increasing the potential of reuse is described. This plan includes firm cost management procedures, marketing activities, appropriate land planning measures and a commitment to research and development.


2016 ◽  
Vol 693 ◽  
pp. 1585-1590
Author(s):  
Yi Zhuo Guo ◽  
Xian Guo Yan ◽  
Shu Juan Li ◽  
Hong Guo

Many studies have proved the service life of cutter can be prolonged by electrolytic strengthening. Based on the theory of electrolytic strengthening technology, this paper introduced and developed prototype equipment for strengthening cutting edge of rotary cutter and put forward a calculation method of total electric quantity consumption during the electrolysis suitable for microcontroller. The M8 high-speed steel tap is taken as a strengthening example. After finished the strengthening process that it clearly see the results of the surface of tap was obviously polished by observing the micrograph. This equipment improves the reliability of electrolytic strengthening and the cost is relatively cheap.


1993 ◽  
Vol 7 (3) ◽  
pp. 176-181 ◽  
Author(s):  
Charles Leonard

The cost–benefits of academic–industry alliances are examined as well as the mechanisms to achieve maximum benefit to all the participants. Strategies to ensure the effective transfer of technology from universities to enterprises are reviewed and suggestions on how these might be refined and supported are offered. The article also touches on the role of a university trading company which can be pivotal in enhancing and expanding academic–industry links.


2015 ◽  
Vol 798 ◽  
pp. 505-509 ◽  
Author(s):  
Lapo Gori ◽  
Roque Luiz da Silva Pitangueira ◽  
Samuel Silva Penna ◽  
Jamile Salim Fuina

This paper summarizes the implementation of an elasto-plastic constitutive model for a micro-polar continuum in the constitutive models framework of the software INSANE (INteractive Structural ANalysis Environment). Such an implementation is based on the tensorial format of a unified constitutive models formulation, that allows to implement different constitutive models independently on the peculiar numerical method adopted for the solution of the problem. The basic characteristics of the micro-polar continuum model and of the unified formulation of constitutive models are briefly recalled. A generalization of the micro-polar model is then introduced in order to include this model in the existent tensor-based formulation. Finally, an enhanced version of the general closest-point algorithm, ables to manage the generalized micro-polar formulation, is derived. A strain localization problem modeling illustrates the implementation.


Author(s):  
Chandan Chattoraj ◽  

The present paper considers the tribological principles on the maintenance of machinery whose three important areas are – Preventive, Condition Based and Proactive. Although breakdown is kept out of view, the morphology and analysis of failure provide important inputs for maintenance strategies. Condition based maintenance depends on three D’s – Detection, Diagnosis and Decision. In many machinery systems, the problem of predicting the remaining useful life – the Proactive part of the program, and evaluating the cost benefits are of enormous importance. Here the authors endeavor to highlight how the tribologist can significantly improve the maintenance practice.


2021 ◽  
Vol 12 (3S) ◽  
pp. 792-804
Author(s):  
A. G. Dmitriev ◽  
K. G. Levi ◽  
A. G. Vakhromeev

Production of natural gas and crude oil in the eastern regions of Russia was accelerated in the past decade, and both the upstream and midstream segments of the oil and gas industry continue to grow at a fast pace. Innovative solutions are needed for engineering and construction surveys aimed to justify options for choosing routes and methods for laying underwater pipeline sections across large rivers and water reservoirs. In our region, positive experience has been gained by employing modern technologies to optimize routing and reduce the costs of detailed surveys. In the project of the Kovykta – Sayansk – Angarsk – Irkutsk gas pipeline construction, an optimal route across the Bratsk water reservoir was chosen based on the results of several stages of investigation, including continuous seismic profiling and side-scan sonar scanning of the reservoir bed. At the first stage, the mosaic maps of side-scan sonograms and a 3D digital model of the reservoir bed bathymetry were constructed and used to develop and propose three options for the gas pipeline design and its route across the reservoir area. At the second stage, detailed underwater and onshore geophysical and drilling operations were carried out along the proposed routes. Based on the transverse profiles, a decision was taken to lay the pipeline section across the reservoir area in a trench along the northern route, which was justified as an economically and technologically optimal solution. In the winter period when the water reservoir surface was covered with thick ice, the northern route was investigated in detail by drilling and seismic survey operations using vertical seismometer cable assemblies and the inverse travel time curve technique. With reference to the velocity law, the travel time sections were processed and converted into depth profiles. A petrophysical model of bottom sediments was constructed, and a scheme was developed to ensure proper processing and interpreting of seismic and acoustic data. Four structural-material complexes were identified: modern silts; underwater eluvial and alluvial deposits; disintegrated and low-strength bedrocks of the Upper Lena Formation; and unaltered bedrock sandstones and siltstones. The continuous seismic profiles and the data from the vertical seismometer cable assemblies were interpreted, and a neotectonic map of bottom sediments was constructed. By analyzing the fault kinematics, it was revealed that normal faults and reverse faults with low-amplitude horizontal shear dominated in the study area; the mapped faults were mainly rootless structures; and displacements along the faults occurred due to a laminar flow of the Cambrian salt layers. An increase in tectonic activity from north to south was explained by the correspondingly degraded strength properties of the bedrocks. Modern neotectonic structures detected from the survey results gave evidence that that the hydrostatic pressure increased after the reservoir had been filled with water, and the phenomenon of reservoir-related seismicity was observed in the study area. Based on the comprehensive geological and geophysical survey data, the geological and engineering conditions of the proposed construction sites were clarified, and the most appropriate route and design of the gas pipeline section across the reservoir area was approved. This study provided the pipeline designers with the qualitative and quantitative information on the phenomena and factors complicating the conditions for laying the gas pipeline in the study area.


Sign in / Sign up

Export Citation Format

Share Document