scholarly journals Fractal Characteristics of Mechanical Interface Contact Parameters

2018 ◽  
Vol 175 ◽  
pp. 03009
Author(s):  
Yuqi Gong ◽  
Jingfang Shen ◽  
Wenwei Liu ◽  
Ling Chen

The contact performance of various mechanical parts has important influence on the static, dynamic and motion response of mechanical equipment. The characterization of rough surface topography is the basis for the study of friction, wear and contact deformation between mechanical bonding surfaces. By analyzing the various models of the characteristic parameters of mechanical interface, we provide a systematic research idea for the model of mechanical joint surface in the future. For further details on rough surface profile, the G-W model is put forward. Then the M-B model perfects its lack of scale independence. The relationship between actual contact area and load is derived from the M-B model based on fractal geometry theory. These formulas are used to study the characteristic parameters of mechanical interface, and the fractal model of contact damping and loss factor is established. Since fractal parameters are not limited by sampling length and resolution of measuring instrument, the new models are more reasonable than before. However, just as the M-B model needs to be improved, the model based on this need to be further studied, and the application of the model also needs to be explored more.

2016 ◽  
Vol 44 (3) ◽  
pp. 150-173 ◽  
Author(s):  
Mehran Motamedi ◽  
Saied Taheri ◽  
Corina Sandu

ABSTRACT For tire designers, rubber friction is a topic of pronounced practical importance. Thus, development of a rubber–road contact model is of great interest. In this research, to predict the effectiveness of the tread compound in a tire as it interacts with the pavement, the physics-based multiscale rubber-friction theories developed by B. Persson and M. Klüppel were studied. The strengths of each method were identified and incorporated into a consolidated model that is more comprehensive and proficient than any single, existing, physics-based approach. In the present work, the friction coefficient was estimated for a summer tire tread compound sliding on sandpaper. The inputs to the model were the fractal properties of the rough surface and the dynamic viscoelastic modulus of rubber. The sandpaper-surface profile was measured accurately using an optical profilometer. Two-dimensional parameterization was performed using one-dimensional profile measurements. The tire tread compound was characterized via dynamic mechanical analysis. To validate the friction model, a laboratory-based, rubber-friction test that could measure the friction between a rubber sample and any arbitrary rough surface was designed and built. The apparatus consisted of a turntable, which can have the surface characteristics of choice, and a rubber wheel in contact with the turntable. The wheel speed, as well as the turntable speed, could be controlled precisely to generate the arbitrary values of longitudinal slip at which the dynamic coefficient of friction was measured. The correlation between the simulation and the experimental results was investigated.


2013 ◽  
Vol 760-762 ◽  
pp. 2064-2067 ◽  
Author(s):  
Jing Fang Shen ◽  
Ke Xiang Wu ◽  
Fei Yang

In this article, according to WenShuHua and Zhangxueniang fractal model, we point out the deficiency. Based on the fractal theory and Zhang, Wens contact stiffness fractal model, this paper puts forward Gamma distribution of rough joint surface normal contact stiffness. This paper considers micro convex body for ellipsoid, contact area for elliptic. This is slightly convex body for sphere hypothesis is more close to the actual situation. At the same time by using statistics theory, considering the contact ellipse long, short axis a and b are greater than zero, the assumption of a and b to two-dimensional Gamma distribution, it is more suitable for engineering practice.


2018 ◽  
Vol 55 (9) ◽  
pp. 091205
Author(s):  
王小娟 Wang Xiaojuan ◽  
刘丙才 Liu Bingcai

2012 ◽  
Vol 190-191 ◽  
pp. 993-997
Author(s):  
Li Jie Sun ◽  
Li Zhang ◽  
Yong Bo Yang ◽  
Da Bo Zhang ◽  
Li Chun Wu

Mechanical equipment fault diagnosis occupies an important position in the industrial production, and feature extraction plays an important role in fault diagnosis. This paper analyzes various methods of feature extraction in rolling bearing fault diagnosis and classifies them into two big categories, which are methods of depending on empirical rules and experimental trials and using objective methods for screening. The former includes five methods: frequency as the characteristic parameters, multi-sensor information fusion method, rough set attribute reduction method, "zoom" method and vibration signal as the characteristic parameters. The latter includes two methods: sensitivity extraction and data mining methods to select attributes. Currently, selection methods of feature parameters depend heavily on empirical rules and experimental trials, thus extraction results are be subjected to restriction from subjective level, feature extraction in the future will develop toward objective screening direction.


Author(s):  
LL Liu ◽  
ZY Wu

This paper presents a new parameter identification method of the Stribeck friction model based on limit cycles. A single degree of freedom mass spring system driven by a belt is studied, and the Stribeck friction model is established between the mass and belt. Limit cycle oscillation will occur when the system is unstable. The limit cycle curve is described by some main shape characteristic parameters using the modified Freeman chain code method. Thus, the Stribeck friction parameters can be identified by using the ergodic search method to minimize the Euclidean distance of the theoretical and identified limit cycle shape characteristic parameters. The parameter identification method based on limit cycles is different from the traditional identification methods. It only needs the displacement and velocity responses of the system instead of the measurement of the friction force or motor voltage/current. All of these works can provide the reference for the research work of the friction parameter identification.


Sign in / Sign up

Export Citation Format

Share Document