scholarly journals Optimization of gas turbine engine control using dynamic programming

2018 ◽  
Vol 220 ◽  
pp. 03002
Author(s):  
Venedikt Kuz’michev ◽  
Ilia Krupenich ◽  
Evgeny Filinov ◽  
Andrey Tkachenko

The aim of engine control optimization is to derive the optimal control law for engine operation managing during the aircraft flight. For numerical modeling a continuous flight process defined by a system of differential equations is replaced by a discrete multi-step process. Values of engine control parameters in particular step uniquely identify a system transitions from one state to another. The algorithm is based on the numerical method of dynamic programming and the Bellman optimality principle. The task is represented as a sequence of nested optimization subtasks, so that control optimization at the first step is external to all others. The optimum control function can be determined using the minimax principle of optimality. Aircraft performance calculation is performed by numerical integration of differential equations of aircraft movement.

Author(s):  
Eric B. Holmquist ◽  
Peter L. Jalbert

New and future gas turbine engines are being required to provide greater thrust with improved efficiency, while simultaneously reducing life cycle operating costs. Improved component capabilities enable active control methods to provide better control of engine operation with reduced margin. One area of interest is a means to assess the relative position of rotating machinery in real-time, in particular hot section turbo machinery. To this end, Hamilton Sundstrand is working to develop a real-time means to monitor blade position relative to the engine static structure. This approach may yield other engine operating characteristics useful in assessing component health, specifically measuring blade tip clearance, time-of-arrival, and other parameters. UTC is leveraging its many years of experience with engine control systems to develop a microwave-based sensing device, applicable to both military and commercial engines. The presentation will discuss a hot section engine demonstration of a blade position monitoring system and the control system implications posed by a microwave-based solution. Considerations necessary to implement such a system and the challenges associated with integrating a microwave-based sensor system into an engine control system are discussed.


Author(s):  
Masahiro Kurosaki ◽  
Minoru Sasamoto ◽  
Kentaro Asaka ◽  
Keiko Nakamura ◽  
Daiki Kakiuchi

This paper presents an efficient numerical integration method for a volume dynamics model in gas turbine engine transient simulations. It is a modified implicit Euler method that allows a time increment that would not be stable with the explicit Euler method. The Jacobian matrix of a nonlinear engine model is evaluated along the steady state engine operation line and scheduled as a function of the corrected shaft speed in advance, eliminating the necessity of computing during the simulation. The proposed method was applied to transient simulations of a compressor rig test model composed of a compressor, a nozzle with variable geometry and a volume placed between them. The eigenvalues of the simplified volume dynamics were analytically derived. It is shown that they are functions of the characteristic time of the volume defined by mass present in the volume divided by mass flow rate flowing into and out of the volume and dimensionless influence coefficients of nearby components.


Author(s):  
Mikhail Gritckevich ◽  
Kunyuan Zhou ◽  
Vincent Peltier ◽  
Markus Raben ◽  
Olga Galchenko

A comprehensive study of several labyrinth seals has been performed in the framework of both single-objective and multi-objective optimizations with the main focus on the effect of stator grooves formed due to the rubbing during gas turbine engine operation. For that purpose, the developed optimization workflow based on the DLR-AutoOpti optimizer and ANSYS-Workbench CAE environment has been employed to reduce the leakage flow and windage heating for several seals. The obtained results indicate that the seal designs obtained from optimizations without stator grooves have worse performance during the lifecycle than those with the stator grooves, justifying the importance of considering this effect for real engineering applications.


2022 ◽  
Author(s):  
Thanakorn Khamvilai ◽  
Medrdad Pakmehr ◽  
George Lu ◽  
Yaojung Yang ◽  
Eric M. Feron ◽  
...  

Author(s):  
Alexandr N. Arkhipov ◽  
Yury A. Ravikovich ◽  
Anton A. Matushkin ◽  
Dmitry P. Kholobtsev

Abstract The regional aircraft with a turbofan gas turbine engine, created in Russia, is successfully operated in the world market. Further increase of the life and reduction of the cost of the life cycle are necessary to ensure the competitive advantages of the engine. One of the units limiting the engine life is the compressor rotor. The cyclic life of the rotor depends on many factors: the stress-strain state in critical zones, the life of the material under low-cycle loading, the regime of engine operation, production deviations (within tolerances), etc. In order to verify the influence of geometry deviations, the calculations of the model with nominal dimensions and the model with the most unfavorable geometric dimensions (worst cases) have been carried out. The obtained influence coefficients for geometric and weight tolerances are then used for probabilistic modeling of stresses in the critical zone. Rotor speed and gas loads on the blades for different flight missions and engine wear are determined from the corresponding aerodynamic calculations taking into account the actual flight cycles (takeoff, reduction, reverse) and are also used for stress recalculations. The subsequent calculation of the rotor cyclic life and the resource assessment is carried out taking into account the spread of the material low-cycle fatigue by probabilistic modeling of the rotor geometry and weight loads. A preliminary assessment of the coefficients of tolerances influence on stress in the critical zone can be used to select the optimal (in terms of life) tolerances at the design stage. Taking into account the actual geometric and weight parameters can allow estimating the stress and expected life of each manufactured rotor.


2001 ◽  
Vol 123 (3) ◽  
pp. 574-579 ◽  
Author(s):  
M. Y. Leong ◽  
C. S. Smugeresky ◽  
V. G. McDonell ◽  
G. S. Samuelsen

Designers of advanced gas turbine combustors are considering lean direct injection strategies to achieve low NOx emission levels. In the present study, the performance of a multipoint radial airblast fuel injector Lean Burn injector (LBI) is explored for various conditions that target low-power gas turbine engine operation. Reacting tests were conducted in a model can combustor at 4 and 6.6 atm, and at a dome air preheat temperature of 533 K, using Jet-A as the liquid fuel. Emissions measurements were made at equivalence ratios between 0.37 and 0.65. The pressure drop across the airblast injector holes was maintained at 3 and 7–8 percent. The results indicate that the LBI performance for the conditions considered is not sufficiently predicted by existing emissions correlations. In addition, NOx performance is impacted by atomizing air flows, suggesting that droplet size is critical even at the expense of penetration to the wall opposite the injector. The results provide a baseline from which to optimize the performance of the LBI for low-power operation.


Sign in / Sign up

Export Citation Format

Share Document