An Efficient Transient Simulation Method for a Volume Dynamics Model

Author(s):  
Masahiro Kurosaki ◽  
Minoru Sasamoto ◽  
Kentaro Asaka ◽  
Keiko Nakamura ◽  
Daiki Kakiuchi

This paper presents an efficient numerical integration method for a volume dynamics model in gas turbine engine transient simulations. It is a modified implicit Euler method that allows a time increment that would not be stable with the explicit Euler method. The Jacobian matrix of a nonlinear engine model is evaluated along the steady state engine operation line and scheduled as a function of the corrected shaft speed in advance, eliminating the necessity of computing during the simulation. The proposed method was applied to transient simulations of a compressor rig test model composed of a compressor, a nozzle with variable geometry and a volume placed between them. The eigenvalues of the simplified volume dynamics were analytically derived. It is shown that they are functions of the characteristic time of the volume defined by mass present in the volume divided by mass flow rate flowing into and out of the volume and dimensionless influence coefficients of nearby components.

Author(s):  
S. A. Savelle ◽  
G. D. Garrard

The T55-L-712 turboshaft engine, used in the U.S. Army CH-47D Chinook helicopter, has been simulated using version 3.0 of the Advanced Turbine Engine Simulation Technique (ATEST) and version 1.0 of the Aerodynamic Turbine Engine Code (ATEC). The models simulate transient and dynamic engine operation from idle to maximum power and run on an IBM-compatible personal computer. ATEST is a modular one-dimensional component-level transient turbine engine simulation. The simulation is tailored to a specific engine using engine-specific component maps and an engine-specific supervisory subroutine that defines component interrelationships. ATEC is a one-dimensional, time-dependent, dynamic turbine engine simulation. ATEC simulates the operation of a gas turbine by solving the one-dimensional, time dependent Euler equations with turbomachinery source terms. The simulation uses elemental control volumes at the sub-component level (e.g. compressor stage). The paper discusses how limited information from a variety of sources was adapted for use in the T55 simulations and how commonality between the models allowed reuse of the same material. The first application of a new turbine engine model, ATEC, to a specific engine is also discussed. Calibration and operational verification of the simulations will be discussed, along with the status of the simulations.


Author(s):  
Doug Garrard

A new one-dimensional, time dependent aerothermodynamic mathematical model and computer simulation of the gas turbine engine has been developed. The Aerodynamic Turbine Engine Code (ATEC) simulates the operation of the gas turbine engine by solving conservation equations, expressed as one dimensional, time dependent Euler equations, with turbomachinery source terms. By incorporating both implicit and explicit equation solvers, transient simulations of the gas turbine engine can be conducted efficiently while maintaining the capability of simulating dynamic events such as compressor stall. ATEC can also be used to address dynamic events or steady-state processes to model both on- and off-design engine operation.


2021 ◽  
Vol 11 (8) ◽  
pp. 3522
Author(s):  
Konstantinos-Marios Tsitsilonis ◽  
Gerasimos Theotokatos

In this study a coupled thermodynamics and crankshaft dynamics model of a large two-stroke diesel engine was utilised, to map the relationship of the engine Instantaneous Crankshaft Torque (ICT) with the following frequently occurring malfunctioning conditions: (a) change in Start of Injection (SOI), (b) change in Rate of Heat Release (RHR), (c) change in scavenge air pressure, and (d) blowby. This was performed using frequency analysis on the engine ICT, which was obtained through a series of parametric runs of the coupled engine model, under the various malfunctioning and healthy operating conditions. This process demonstrated that engine ICT can be successfully utilised to identify the distinct effects of malfunctions (c) or (d), as they occur individually in any cylinder. Furthermore by using the same process, malfunctions (a) and (b) can be identified as they occur individually for any cylinder, however there is no distinct effect on the engine ICT among these malfunctions, since their effect on the in-cylinder pressure is similar. As a result, this study demonstrates the usefulness of the engine ICT as a non-intrusive diagnostic measurement, as well as the benefits of malfunctioning conditions mapping, which allows for quick and less resource intensive identification of engine malfunctions.


Author(s):  
Ioannis Kolias ◽  
Alexios Alexiou ◽  
Nikolaos Aretakis ◽  
Konstantinos Mathioudakis

A mean-line compressor performance calculation method is presented that covers the entire operating range, including the choked region of the map. It can be directly integrated into overall engine performance models, as it is developed in the same simulation environment. The code materializing the model can inherit the same interfaces, fluid models, and solvers, as the engine cycle model, allowing consistent, transparent, and robust simulations. In order to deal with convergence problems when the compressor operates close to or within the choked operation region, an approach to model choking conditions at blade row and overall compressor level is proposed. The choked portion of the compressor characteristics map is thus numerically established, allowing full knowledge and handling of inter-stage flow conditions. Such choking modelling capabilities are illustrated, for the first time in the open literature, for the case of multi-stage compressors. Integration capabilities of the 1D code within an overall engine model are demonstrated through steady state and transient simulations of a contemporary turbofan layout. Advantages offered by this approach are discussed, while comparison of using alternative approaches for representing compressor performance in overall engine models is discussed.


Author(s):  
F Chang ◽  
Z-H Lu

It is worthwhile to design a more accurate dynamic model for air springs, to investigate the dynamic behaviour of an air spring suspension, and to analyse and guide the design of vehicles with air spring suspensions. In this study, a dynamic model of air spring was established, considering the heat transfer process of the air springs. Two different types of air spring were tested, and the experimental results verified the effectiveness of the air spring model compared with the traditional model. The key factors affecting the computation accuracy were studied and checked by comparing the results of the experiments and simulations. The new dynamic model of the air spring was integrated into the full-vehicle multi-body dynamics model, in order to investigate the air suspension behaviour and vehicle dynamics characteristics. The co-simulation method using ADAMS and MATLAB/Simulink was applied to integration of the air spring model with the full-vehicle multi-body dynamics model.


Author(s):  
Seyyed Hamid Reza Hosseini ◽  
Hiwa Khaledi ◽  
Mohsen Reza Soltani

Gas turbine fault identification has been used worldwide in many aero and land engines. Model based techniques have improved isolation of faults in components and stages’ fault trend monitoring. In this paper a powerful nonlinear fault identification system is developed in order to predict the location and trend of faults in two major components: compressor and turbine. For this purpose Siemens V94.2 gas turbine engine is modeled one dimensionally. The compressor is simulated using stage stacking technique, while a stage by stage blade cooling model has been used in simulation of the turbine. New fault model has been used for turbine, in which a degradation distribution has been considered for turbine stages’ performance. In order to validate the identification system with a real case, a combined fault model (a combination of existing faults models) for compressor is used. Also the first stage of the turbine is degraded alone while keeping the other stages healthy. The target was to identify the faulty stages not faulty components. The imposed faults are one of the most common faults in a gas turbine engine and the problem is one of the most difficult cases. Results show that the fault diagnostic system could isolate faults between compressor and turbine. It also predicts the location of faulty stages of each component. The most interesting result is that the fault is predicted only in the first stage (faulty stage) of the turbine while other stages are identified as healthy. Also combined fault of compressor is well identified. However, the magnitude of degradation could not be well predicted but, using more detailed models as well as better data from gas turbine exhaust temperature, will enhance diagnostic results.


Author(s):  
Mikhail Gritckevich ◽  
Kunyuan Zhou ◽  
Vincent Peltier ◽  
Markus Raben ◽  
Olga Galchenko

A comprehensive study of several labyrinth seals has been performed in the framework of both single-objective and multi-objective optimizations with the main focus on the effect of stator grooves formed due to the rubbing during gas turbine engine operation. For that purpose, the developed optimization workflow based on the DLR-AutoOpti optimizer and ANSYS-Workbench CAE environment has been employed to reduce the leakage flow and windage heating for several seals. The obtained results indicate that the seal designs obtained from optimizations without stator grooves have worse performance during the lifecycle than those with the stator grooves, justifying the importance of considering this effect for real engineering applications.


Author(s):  
A. Karl Owen ◽  
Anne Daugherty ◽  
Doug Garrard ◽  
Howard C. Reynolds ◽  
Richard D. Wright

A generic one-dimensional gas turbine engine model, developed at the Arnold Engineering Development Center, has been configured to represent the gas generator of a General Electric axial-centrifugal gas turbine engine in the six kg/sec airflow class. The model was calibrated against experimental test results for a variety of initial conditions to insure that the model accurately represented the engine over the range of test conditions of interest. These conditions included both assisted (with a starter motor) and unassisted (altitude windmill) starts. The model was then exercised to study a variety of engine configuration modifications designed to improve its starting characteristics and thus quantify potential starting improvements for the next generation of gas turbine engines. This paper discusses the model development and describes the test facilities used to obtain the calibration data. The test matrix for the ground level testing is also presented. A companion paper presents the model calibration results and the results of the trade-off study.


Author(s):  
Alexandr N. Arkhipov ◽  
Yury A. Ravikovich ◽  
Anton A. Matushkin ◽  
Dmitry P. Kholobtsev

Abstract The regional aircraft with a turbofan gas turbine engine, created in Russia, is successfully operated in the world market. Further increase of the life and reduction of the cost of the life cycle are necessary to ensure the competitive advantages of the engine. One of the units limiting the engine life is the compressor rotor. The cyclic life of the rotor depends on many factors: the stress-strain state in critical zones, the life of the material under low-cycle loading, the regime of engine operation, production deviations (within tolerances), etc. In order to verify the influence of geometry deviations, the calculations of the model with nominal dimensions and the model with the most unfavorable geometric dimensions (worst cases) have been carried out. The obtained influence coefficients for geometric and weight tolerances are then used for probabilistic modeling of stresses in the critical zone. Rotor speed and gas loads on the blades for different flight missions and engine wear are determined from the corresponding aerodynamic calculations taking into account the actual flight cycles (takeoff, reduction, reverse) and are also used for stress recalculations. The subsequent calculation of the rotor cyclic life and the resource assessment is carried out taking into account the spread of the material low-cycle fatigue by probabilistic modeling of the rotor geometry and weight loads. A preliminary assessment of the coefficients of tolerances influence on stress in the critical zone can be used to select the optimal (in terms of life) tolerances at the design stage. Taking into account the actual geometric and weight parameters can allow estimating the stress and expected life of each manufactured rotor.


Sign in / Sign up

Export Citation Format

Share Document