scholarly journals General approach to optimize settings of ship radars repair procedures

2018 ◽  
Vol 234 ◽  
pp. 01008
Author(s):  
Evgeni Guglev ◽  
Chavdar Alexandrov

A number of possible formal methods for constructing an approach to solve the problem of global optimization of the setting process of ship radars repair procedure are introduced in this paper. The basis of the formalized task assignment is the selection of a sequence of operations related to determining the corresponding values of the electronic (electrical) components of radars, providing the global optimum of the created imitation model of the whole task with the corresponding subtasks. The algorithm of the global optimization task is built in the form of imitation experimental procedures with a multi-alternative optimization model. The multi-plan character (taking into account the different ranges) and the multi-criteria of such an experiment require an automatic search for optimizing the scanning at different ranges. The alternative for inclusion in the relevant group, with good result achieved is set in accordance with expert estimations (for the time of the scanning), Boolean variables (alternative for the inclusion of different ranges) or stochastic variables – by nomograms. The six-steps method (for six different ranges) is presented as a sequence of achieved optimums for the different ranges. The optimal set of functions determined by the task solution method is a solution of a stochastic problem including scanning time, pulse duration and ranges.

2020 ◽  
Author(s):  
Alberto Bemporad ◽  
Dario Piga

AbstractThis paper proposes a method for solving optimization problems in which the decision-maker cannot evaluate the objective function, but rather can only express a preference such as “this is better than that” between two candidate decision vectors. The algorithm described in this paper aims at reaching the global optimizer by iteratively proposing the decision maker a new comparison to make, based on actively learning a surrogate of the latent (unknown and perhaps unquantifiable) objective function from past sampled decision vectors and pairwise preferences. A radial-basis function surrogate is fit via linear or quadratic programming, satisfying if possible the preferences expressed by the decision maker on existing samples. The surrogate is used to propose a new sample of the decision vector for comparison with the current best candidate based on two possible criteria: minimize a combination of the surrogate and an inverse weighting distance function to balance between exploitation of the surrogate and exploration of the decision space, or maximize a function related to the probability that the new candidate will be preferred. Compared to active preference learning based on Bayesian optimization, we show that our approach is competitive in that, within the same number of comparisons, it usually approaches the global optimum more closely and is computationally lighter. Applications of the proposed algorithm to solve a set of benchmark global optimization problems, for multi-objective optimization, and for optimal tuning of a cost-sensitive neural network classifier for object recognition from images are described in the paper. MATLAB and a Python implementations of the algorithms described in the paper are available at http://cse.lab.imtlucca.it/~bemporad/glis.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Erik Cuevas ◽  
Mauricio González ◽  
Daniel Zaldivar ◽  
Marco Pérez-Cisneros ◽  
Guillermo García

A metaheuristic algorithm for global optimization called the collective animal behavior (CAB) is introduced. Animal groups, such as schools of fish, flocks of birds, swarms of locusts, and herds of wildebeest, exhibit a variety of behaviors including swarming about a food source, milling around a central locations, or migrating over large distances in aligned groups. These collective behaviors are often advantageous to groups, allowing them to increase their harvesting efficiency, to follow better migration routes, to improve their aerodynamic, and to avoid predation. In the proposed algorithm, the searcher agents emulate a group of animals which interact with each other based on the biological laws of collective motion. The proposed method has been compared to other well-known optimization algorithms. The results show good performance of the proposed method when searching for a global optimum of several benchmark functions.


2011 ◽  
Vol 08 (03) ◽  
pp. 535-544 ◽  
Author(s):  
BOUDJEHEM DJALIL ◽  
BOUDJEHEM BADREDDINE ◽  
BOUKAACHE ABDENOUR

In this paper, we propose a very interesting idea in global optimization making it easer and a low-cost task. The main idea is to reduce the dimension of the optimization problem in hand to a mono-dimensional one using variables coding. At this level, the algorithm will look for the global optimum of a mono-dimensional cost function. The new algorithm has the ability to avoid local optima, reduces the number of evaluations, and improves the speed of the algorithm convergence. This method is suitable for functions that have many extremes. Our algorithm can determine a narrow space around the global optimum in very restricted time based on a stochastic tests and an adaptive partition of the search space. Illustrative examples are presented to show the efficiency of the proposed idea. It was found that the algorithm was able to locate the global optimum even though the objective function has a large number of optima.


2012 ◽  
Vol 503-504 ◽  
pp. 40-43
Author(s):  
Ling Fang Li ◽  
Zhe Ming He ◽  
You Xin Luo

Generally, action of constraints exists in reliability optimization design of mechanical parts. Usually, general optimum methods are adopted in reliability optimization design, so the local solution is obtained. Aimed at this situation, a global optimum method was introduced by Lingo13.0 software. The result shows the model is practical and effective and its solution is global solution better than the result with general optimum method. As the method is simple, it is worthy to spread in optimum design


Author(s):  
J. Gu ◽  
G. Y. Li ◽  
Z. Dong

Metamodeling techniques are increasingly used in solving computation intensive design optimization problems today. In this work, the issue of automatic identification of appropriate metamodeling techniques in global optimization is addressed. A generic, new hybrid metamodel based global optimization method, particularly suitable for design problems involving computation intensive, black-box analyses and simulations, is introduced. The method employs three representative metamodels concurrently in the search process and selects sample data points adaptively according to the values calculated using the three metamodels to improve the accuracy of modeling. The global optimum is identified when the metamodels become reasonably accurate. The new method is tested using various benchmark global optimization problems and applied to a real industrial design optimization problem involving vehicle crash simulation, to demonstrate the superior performance of the new algorithm over existing search methods. Present limitations of the proposed method are also discussed.


Author(s):  
Liqun Wang ◽  
Songqing Shan ◽  
G. Gary Wang

The presence of black-box functions in engineering design, which are usually computation-intensive, demands efficient global optimization methods. This work proposes a new global optimization method for black-box functions. The global optimization method is based on a novel mode-pursuing sampling (MPS) method which systematically generates more sample points in the neighborhood of the function mode while statistically covers the entire search space. Quadratic regression is performed to detect the region containing the global optimum. The sampling and detection process iterates until the global optimum is obtained. Through intensive testing, this method is found to be effective, efficient, robust, and applicable to both continuous and discontinuous functions. It supports simultaneous computation and applies to both unconstrained and constrained optimization problems. Because it does not call any existing global optimization tool, it can be used as a standalone global optimization method for inexpensive problems as well. Limitation of the method is also identified and discussed.


Author(s):  
Alireza Saremi ◽  
Nasr Al-Hinai ◽  
G. Gary Wang ◽  
Tarek ElMekkawy

The current work discusses a novel global optimization method called the Multi-Agent Normal Sampling Technique (MANST). MANST is based on systematic sampling of points around agents; each agent in MANST represents a candidate solution of the problem. All agents compete with each other for a larger share of available resources. The performance of all agents is periodically evaluated and a specific number of agents who show no promising achievements are deleted; new agents are generated in the proximity of those promising agents. This process continues until the agents converge to the global optimum. MANST is a standalone global optimization technique. It is benchmarked with six well-known test cases and the results are then compared with those obtained from Matlab™ 7.1 GA Toolbox. The test results showed that MANST outperformed Matlab™ 7.1 GA Toolbox for the benchmark problems in terms of accuracy, number of function evaluations, and CPU time.


Author(s):  
Alireza Saremi ◽  
Amir H. Birjandi ◽  
G. Gary Wang ◽  
Tarek ElMekkawy ◽  
Eric Bibeau

This paper describes an enhanced version of a new global optimization method, Multi-Agent Normal Sampling Technique (MANST) described in reference [1]. Each agent in MANST includes a number of points that sample around the mean point with a certain standard deviation. In each step the point with the minimum value in the agent is chosen as the center point for the next step normal sampling. Then the chosen points of all agents are compared to each other and agents receive a certain share of the resources for the next step according to their lowest mean function value at the current step. The performance of all agents is periodically evaluated and a specific number of agents who show no promising achievements are deleted; new agents are generated in the proximity of those promising agents. This process continues until the agents converge to the global optimum. MANST is a standalone global optimization technique and does not require equations or knowledge about the objective function. The unique feature of this method in comparison with other global optimization methods is its dynamic normal distribution search. This work presents our recent research in enhancing MANST to handle variable boundaries and constraints. Moreover, a lean group sampling approach is implemented to prevent sampling in the same region for different agents. The overall capability and efficiency of the MANST has been improved as a result in the newer version. The enhanced MANST is highly competitive with other stochastic methods such as Genetic Algorithm (GA). In most of the test cases, the performance of the MANST is significantly higher than the Matlab™ GA Toolbox.


2015 ◽  
Vol 2 (7) ◽  
pp. 150123 ◽  
Author(s):  
Saikat Sarkar ◽  
Debasish Roy ◽  
Ram Mohan Vasu

A global optimization framework, COMBEO (Change Of Measure Based Evolutionary Optimization), is proposed. An important aspect in the development is a set of derivative-free additive directional terms, obtainable through a change of measures en route to the imposition of any stipulated conditions aimed at driving the realized design variables (particles) to the global optimum. The generalized setting offered by the new approach also enables several basic ideas, used with other global search methods such as the particle swarm or the differential evolution, to be rationally incorporated in the proposed set-up via a change of measures. The global search may be further aided by imparting to the directional update terms additional layers of random perturbations such as ‘scrambling’ and ‘selection’. Depending on the precise choice of the optimality conditions and the extent of random perturbation, the search can be readily rendered either greedy or more exploratory. As numerically demonstrated, the new proposal appears to provide for a more rational, more accurate and, in some cases, a faster alternative to many available evolutionary optimization schemes.


Author(s):  
Fred Glover ◽  
Leon Lasdon ◽  
John Plummer ◽  
Abraham Duarte ◽  
Rafael Marti ◽  
...  

Motivated by the successful use of a pseudo-cut strategy within the setting of constrained nonlinear and nonconvex optimization in Lasdon et al. (2010), we propose a framework for general pseudo-cut strategies in global optimization that provides a broader and more comprehensive range of methods. The fundamental idea is to introduce linear cutting planes that provide temporary, possibly invalid, restrictions on the space of feasible solutions, as proposed in the setting of the tabu search metaheuristic in Glover (1989), in order to guide a solution process toward a global optimum, where the cutting planes can be discarded and replaced by others as the process continues. These strategies can be used separately or in combination, and can also be used to supplement other approaches to nonlinear global optimization. Our strategies also provide mechanisms for generating trial solutions that can be used with or without the temporary enforcement of the pseudo-cuts.


Sign in / Sign up

Export Citation Format

Share Document