scholarly journals Multi-criterion parameters optimization of the heat exchanger element air heating system of a building

2018 ◽  
Vol 251 ◽  
pp. 03001
Author(s):  
Andrei Melekhin

Air heating systems of buildings are resource-consuming systems, for this reason, improving their resource efficiency appears to be of great significance. The author have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger engineering systems of buildings, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model. Finding the best managed of the parameters of the heat exchanger element air heating system of a building is possible with the developed by the author of a comprehensive method of research based on multi-criteria parameters optimization with the introduction of empirically obtained data.

Author(s):  
Л. А. Кущев ◽  
В. Н. Мелькумов ◽  
Н. Ю. Саввин

Постановка задачи. Рассматривается теплообменный процесс, протекающий в модифицированном гофрированном межпластинном канале интенсифицированного пластинчатого теплообменного аппарата с повышенной турбулизацией теплоносителя. Необходимо разработать компьютерную модель движения теплоносителя в диапазоне скоростей 0,1-1,5 м/с и определить коэффициент турбулизации пластинчатого теплообменника. Результаты. Приведены результаты компьютерного моделирования движения теплоносителя в межпластинном гофрированном канале оригинального пластинчатого теплообменного аппарата с помощью программного комплекса Аnsys . Определены критерии устойчивости системы. Выполнено 3 D -моделирование канала, образуемого гофрированными пластинами. При исследовании процесса турбулизации были рассмотрены несколько скоростных режимов движения теплоносителя. Определен коэффициент турбулизации Tu, %. Выводы. В результате компьютерного моделирования установлено увеличение коэффициента теплопередачи К, Вт/(м ℃ ) за счет повышенной турбулизации потока, что приводит к снижению металлоемкости и уменьшению стоимости теплообменного оборудования. Statement of the problem. The heat exchange process occurring in a modified corrugated interplate channel of an intensified plate heat exchanger with an increased turbulence of the heat carrier is discussed. A computer model of the coolant movement in the speed range of 0.1-1.5 m/s is developed and the turbulence coefficient of the plate heat exchanger is determined. Results. The article presents the results of computer modeling of the coolant movement in the interplate corrugated channel of the original plate heat exchanger using the Ansys software package. The criteria of system stability are defined. 3D modeling of the channel formed by corrugated plates is performed. In the study of the process of turbulence several high-speed modes of movement of the coolant were considered. The turbulence coefficient Tu, % is determined. Conclusions. As a result of computer simulation, an increase in the heat transfer coefficient K, W/(m ℃) was found due to an increased turbulization of the flow, which leads to a decrease in metal consumption and a decrease in the cost of heat exchange equipment.


Author(s):  
L. A. Kushchev ◽  
V. N. Melkumov ◽  
N. Yu. Savvin

Statement of the problem. The heat exchange process occurring in a modified corrugated interplate channel of an intensified plate heat exchanger with an increased turbulence of the heat carrier is discussed. A computer model of the coolant movement in the speed range of 0.1--1.5 m/s is developed and the turbulence coefficient of the plate heat exchanger is determined.Results. The article presents the results of computer modeling of the coolant movement in the interplate corrugated channel of the original plate heat exchanger using the Ansys software package. The criteria of system stability are defined. 3D modeling of the channel formed by corrugated plates is performed. In the study of the process of turbulence several high-speed modes of movement of the coolant were considered. The turbulence coefficient Tu, % is determined. Conclusions. As a result of computer simulation, an increase in the heat transfer coefficient K, W/(m2 ℃) was found due to an increased turbulization of the flow, which leads to a decrease in metal consumption and a decrease in the cost of heat exchange equipment.


2020 ◽  
Vol 324 ◽  
pp. 01009
Author(s):  
Aleksandr A. Vorob’ev ◽  
Dmitriy P. Posanchukov ◽  
Aleksandr A. Kozlov ◽  
Aleksey V. Ivanov

The paper discusses a dynamic model of coil-wound heat exchanger and its implementation in the MathWorks SimulinkTM computer simulation system. As a simulation object was chosen a coil-wound heat exchanger with wire-finned tubes of a commercial low-capacity air separation unit. The methods for obtaining experimental data has been described, the non-steady heat exchange process has been simulated, and the obtained results have been analyzed.


1963 ◽  
Vol 67 (636) ◽  
pp. 796-796
Author(s):  
H. Pearson

I Think Mr. Filleul's main point, (in the November Journal) somewhat hidden behind some obscure comments about Carnot engines and the like, is that in a by-pass engine with heat exchanger, the heat exchange process is making a definite alteration to the thermodynamic cycle efficiency of the whole engine and not just changing the propulsive efficiency. This may or may not be an important point, depending upon the point of view of the expositor of the subject. In fact, even without heat exchange and when the by-pass compressor and turbine have realistic efficiencies, the by-pass process itself does alter in an unfavourable direction the overall thermodynamic cycle efficiency. This is one reason why in a by-pass compressor with separate jets one does not wish to make for optimum performance the by-pass and jet velocities equal.


1990 ◽  
Vol 112 (2) ◽  
pp. 295-300 ◽  
Author(s):  
D. P. Sekulic

This paper presents the entropy generation (irreversibility) concept as a convenient method for estimating the quality of the heat exchange process in heat exchanger analysis. The entropy generation caused by finite temperature differences, scaled by the maximum possible entropy generation that can exist in an open system with two fluids, is used as the quantitative measure of the quality of energy transformation (the heat exchange process). This measure is applied to a two-fluid heat exchanger of arbitrary flow arrangement. The influence of different parameters (inlet temperature ratio, fluid flow heat capacity rate ratio, flow arrangements) and the heat exchanger thermal size (number of heat transfer units) on the quality of energy transformation for different types of heat exchangers is discussed. In this analysis it is assumed that the contribution of fluid friction to entropy generation is negligible.


Author(s):  
Eduard Marusic-Paloka ◽  
Matko Ljulj ◽  
Igor Pazanin ◽  
Josip Tambaca

The standard engineer's model for heat transfer between the fluid flowing through the pipe and the exterior medium neglects the effects of the pipe's wall. The goal of this paper is to prove that they are not always negligible. Comparing the ratio between diffusivities of the fluid and the wall with the wall's thickness, using rigorous asymptotic analysis, we find five different models for effective description of the heat exchange process.


Sign in / Sign up

Export Citation Format

Share Document