scholarly journals COMPUTER SIMULATION OF FLOW IN CORRUGATED CHANNEL OF PLATE HEAT EXCHANGER

Author(s):  
L. A. Kushchev ◽  
V. N. Melkumov ◽  
N. Yu. Savvin

Statement of the problem. The heat exchange process occurring in a modified corrugated interplate channel of an intensified plate heat exchanger with an increased turbulence of the heat carrier is discussed. A computer model of the coolant movement in the speed range of 0.1--1.5 m/s is developed and the turbulence coefficient of the plate heat exchanger is determined.Results. The article presents the results of computer modeling of the coolant movement in the interplate corrugated channel of the original plate heat exchanger using the Ansys software package. The criteria of system stability are defined. 3D modeling of the channel formed by corrugated plates is performed. In the study of the process of turbulence several high-speed modes of movement of the coolant were considered. The turbulence coefficient Tu, % is determined. Conclusions. As a result of computer simulation, an increase in the heat transfer coefficient K, W/(m2 ℃) was found due to an increased turbulization of the flow, which leads to a decrease in metal consumption and a decrease in the cost of heat exchange equipment.

Author(s):  
Л. А. Кущев ◽  
В. Н. Мелькумов ◽  
Н. Ю. Саввин

Постановка задачи. Рассматривается теплообменный процесс, протекающий в модифицированном гофрированном межпластинном канале интенсифицированного пластинчатого теплообменного аппарата с повышенной турбулизацией теплоносителя. Необходимо разработать компьютерную модель движения теплоносителя в диапазоне скоростей 0,1-1,5 м/с и определить коэффициент турбулизации пластинчатого теплообменника. Результаты. Приведены результаты компьютерного моделирования движения теплоносителя в межпластинном гофрированном канале оригинального пластинчатого теплообменного аппарата с помощью программного комплекса Аnsys . Определены критерии устойчивости системы. Выполнено 3 D -моделирование канала, образуемого гофрированными пластинами. При исследовании процесса турбулизации были рассмотрены несколько скоростных режимов движения теплоносителя. Определен коэффициент турбулизации Tu, %. Выводы. В результате компьютерного моделирования установлено увеличение коэффициента теплопередачи К, Вт/(м ℃ ) за счет повышенной турбулизации потока, что приводит к снижению металлоемкости и уменьшению стоимости теплообменного оборудования. Statement of the problem. The heat exchange process occurring in a modified corrugated interplate channel of an intensified plate heat exchanger with an increased turbulence of the heat carrier is discussed. A computer model of the coolant movement in the speed range of 0.1-1.5 m/s is developed and the turbulence coefficient of the plate heat exchanger is determined. Results. The article presents the results of computer modeling of the coolant movement in the interplate corrugated channel of the original plate heat exchanger using the Ansys software package. The criteria of system stability are defined. 3D modeling of the channel formed by corrugated plates is performed. In the study of the process of turbulence several high-speed modes of movement of the coolant were considered. The turbulence coefficient Tu, % is determined. Conclusions. As a result of computer simulation, an increase in the heat transfer coefficient K, W/(m ℃) was found due to an increased turbulization of the flow, which leads to a decrease in metal consumption and a decrease in the cost of heat exchange equipment.


2020 ◽  
Vol 154 ◽  
pp. 05008
Author(s):  
Paweł Obstawski ◽  
Tomasz Bakoń ◽  
Anna Kozikowska

In solar heating systems with an absorber area of more than 20 m2, a plate heat exchanger is used as a separator between the primary glycol-based refrigerant and secondary water. The use of a plate heat exchanger enables an increase in the heat exchange area compared to the standard coil heat exchangers located inside the domestic hot water tank. An important problem is to determine the volume flow rate on both the primary and secondary side of the exchanger. The paper presents an analysis of the influence of the circulation pump efficiency on the primary and secondary side of the heat exchanger installed in a solar heating installation on the intensity of the heat exchange process.


Author(s):  
Y. Elistratova ◽  
A. Seminenko ◽  
V. Minko ◽  
R. Ramazanov

The relevance of the work of information and diagnostic systems in the field of monitoring of plate heat exchange equipment is considered. The reliability of the monitoring devices requires an accurate mathematical description of the thermo hydrodynamic processes in the heat exchange channels. The classical description of these processes implies a uniform distribution of the flow rate of the working medium along the length of the plate package, which in turn implies equal conditions for the formation of salt deposition products on the heating surfaces of the plate heat exchanger. The use of dependencies that take into account the equality of costs for a package of plates reduces the reliability of diagnostics of the efficiency of hot water devices of the plate type. Since the geometric space formed by the plates is represented by parallel channels connected by sections of transit collectors, the method of resistance characteristics is proposed as a method of hydraulic calculation of the distribution features of liquid flows through heat exchange channels. The dependence of the design features of the location of the interplate channels relative to the input of the coolant into the distribution manifold is revealed. It is found that, the flow rate of the circulating coolant is less in the channels most remote from the inlet pipe than in the nearest channels. The hypothesis of the influence of the relative position of the channels in relation to the inlet pipe is confirmed by numerical studies of the hydrodynamic regime of the plate heat exchanger.


Author(s):  
L. A. Kushchev ◽  
V. A. Uvarov ◽  
N. Yu. Savvin ◽  
S. V. Chuikin

Statement of the problem. The problem of intensification of heat exchange processes in a plate heat exchanger on the basis of the HH№ 02 heat exchanger of the Ridan company is discussed. It is essential to carry out an analysis of the existing methods of intensification of heat exchange processes in plate devices according to the results of the analysis to choose the most promising method of intensification of heat exchange process and based on it to develop a patent-protected design of a heat exchange plate. Laboratory tests of the intensified plate heat exchanger with increased turbulence of the coolant are performed. The results of thermal tests on a specialized laboratory installation of the resulting and the serial heat exchanger are presented.Results. The results of the comparison of experimental studies of the intensified plate heat exchanger with the increased turbulence of the heat carrier and the serial plate heat exchanger of identical heat power are shown. The graphs of dependence of the heat transfer coefficient, which is the major characteristic of the operation of heat exchange equipment, on the average temperature pressure are designed. Conclusions. As a result of the laboratory tests in the specialized laboratory of BSTU named after V. G. Shukhov and research at the Voronezh State Technical University established a rise in the heat transfer coefficient due to the increased turbulence of the coolant flow, which causes a decrease in metal consumption and reduces the cost of heat exchange equipment.


2020 ◽  
Vol 324 ◽  
pp. 01009
Author(s):  
Aleksandr A. Vorob’ev ◽  
Dmitriy P. Posanchukov ◽  
Aleksandr A. Kozlov ◽  
Aleksey V. Ivanov

The paper discusses a dynamic model of coil-wound heat exchanger and its implementation in the MathWorks SimulinkTM computer simulation system. As a simulation object was chosen a coil-wound heat exchanger with wire-finned tubes of a commercial low-capacity air separation unit. The methods for obtaining experimental data has been described, the non-steady heat exchange process has been simulated, and the obtained results have been analyzed.


1963 ◽  
Vol 67 (636) ◽  
pp. 796-796
Author(s):  
H. Pearson

I Think Mr. Filleul's main point, (in the November Journal) somewhat hidden behind some obscure comments about Carnot engines and the like, is that in a by-pass engine with heat exchanger, the heat exchange process is making a definite alteration to the thermodynamic cycle efficiency of the whole engine and not just changing the propulsive efficiency. This may or may not be an important point, depending upon the point of view of the expositor of the subject. In fact, even without heat exchange and when the by-pass compressor and turbine have realistic efficiencies, the by-pass process itself does alter in an unfavourable direction the overall thermodynamic cycle efficiency. This is one reason why in a by-pass compressor with separate jets one does not wish to make for optimum performance the by-pass and jet velocities equal.


1990 ◽  
Vol 112 (2) ◽  
pp. 295-300 ◽  
Author(s):  
D. P. Sekulic

This paper presents the entropy generation (irreversibility) concept as a convenient method for estimating the quality of the heat exchange process in heat exchanger analysis. The entropy generation caused by finite temperature differences, scaled by the maximum possible entropy generation that can exist in an open system with two fluids, is used as the quantitative measure of the quality of energy transformation (the heat exchange process). This measure is applied to a two-fluid heat exchanger of arbitrary flow arrangement. The influence of different parameters (inlet temperature ratio, fluid flow heat capacity rate ratio, flow arrangements) and the heat exchanger thermal size (number of heat transfer units) on the quality of energy transformation for different types of heat exchangers is discussed. In this analysis it is assumed that the contribution of fluid friction to entropy generation is negligible.


Sign in / Sign up

Export Citation Format

Share Document