scholarly journals Performance evaluation and upgrade options for existing sequencing batch reactor for nutrient removal

2019 ◽  
Vol 268 ◽  
pp. 06007
Author(s):  
Jahziel Lantin ◽  
Jeremy Ynnos Abenoja ◽  
Jason Ly ◽  
Cheenee Marie Castillones ◽  
Arnel Beltran ◽  
...  

Assessment and upgrade of existing sewage treatment plants (STPs) are necessary due to the revision of the existing effluent regulations which now monitors nutrients including ammonia, nitrate and phosphates. The aim of this study is the performance evaluation of four sequencing batch reactor (SBR) type of STP based on the following parameters: biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), nitrates, ammonia, phosphates and pH; and their potential upgrade based on the revised regulations stated in DAO 2016-08. Four sequencing batch reactor (SBR) type of STP were assessed for 12 weeks for this study. Results showed noncompliance with nutrient levels, thus upgrade is necessary. Analytical Hierarchy Process (AHP), a Multi-Criteria-Analysis (MCA) tool, was used to select the best option for upgrade among options that include (1) additional SBR tank, (2) diverting wastewater to another treatment facility, and (3) converting the SBR into membrane bioreactor (MBR). Considering the criterion for upgrade, option 2 was the most preferred decision followed by option 1 then option 3.

2015 ◽  
Vol 802 ◽  
pp. 401-405 ◽  
Author(s):  
Nur Nasuha Ahmad Puat ◽  
Hamidi Abdul Aziz

This study evaluated the performance of sequencing batch reactor (SBR) with and without the fibers of poultry slaughterhouse wastewater (PSWW). The fibers act as attachment materials to the suspended solids, which are considered as pollutant in PSWW. PSWW contains high-pollutant concentrations. Experiments were conducted using two 60 L laboratory SBR reactors at room temperature (25 °C) and pH 7±0.5. The removal percentage of SBR with and without the fibers was compared in terms of chemical oxygen demand and biological oxygen demand. The removal percentage of SBR with fibers showed higher overall performance, which was approximately 90%. Meanwhile, the removal of SBR without fibers achieved an average percentage of about 70%, which was slightly lower compared with SBR reactor with fibers.


2011 ◽  
Vol 255-260 ◽  
pp. 3037-3041 ◽  
Author(s):  
Kui Zu Su ◽  
Chang Wang ◽  
Hui Fang

Aerobic granules were cultivated in the sequencing batch reactor at 15-25°C, pH 7.0 ± 0.1. Settling time decreased from 5 minutes to 1 minute gradually. As increasing the chemical oxygen demand (COD) and NH3-N in influent, COD removal efficiency and mixed liquid suspended solids of the reactor increased. Sludge volume index decreased continuously for a few days and then stabilized at 22 ml g-1. Selective pressure induced by settling velocity was proved to play a crucial role in activated sludge granulation. Based on the continuously measured data, the granulation process was divided into three phases, granules namely initiating, developing and maturating.


2017 ◽  
Vol 1 (1) ◽  
pp. 12-16
Author(s):  
Alexandra Bercoff ◽  
Stig Morling

A small SBR-plant (Sequencing Batch Reactor) operating at substantial load variations has been examined with respect to performance at changing load conditions. The plant serves a ski resort area about 200 km north of Stockholm. The plant has a capacity equivalent to 700 pe and a daily flow of 100 m3/d. The results have been examined closely both by a one year follow-up study of the plant performance and also by a Master Thesis. The analysis of the performance study demonstrates how flexible an intermittently operated biological reactor is in treating varying loads, but also indicates possible operational strategies. It is important to keep in mind that the inlet concentrations of the main pollutants far exceed the “normal” values in untreated municipal wastewater. This circumstance is mainly attributed to a new and concentrated sewer system. Thus the amounts of diluting water are very limited.The treatment chain is built up by a pre-treatment stage, a biological and chemical treatment stage in an SBR-reactor and a final polishing stage where the water passes a fine grade screening filter.The requirements set for effluent water by the Environmental Protection Division on the Environmental Testing Advisory Board at the Swedish Environmental Agency are:• BOD7 < 10 ppm;• Total P < 0.3 ppm;No formal requirements have been addressed for COD, suspended solids (SS) or nitrogen. However, these pollution indicators have also been examined during the follow-up session. Typical performance results during the intense period (ski season) were as follows: • BOD7 < 3 ppm, equivalent to a removal efficiency of around 99%;•COD < 40 ppm, equivalent to a removal efficiency of around 96 %;• SS < 5 ppm, equivalent to a removal efficiency of around 99 %;• Total P < 0.3 ppm, equivalent to a removal efficiency of around 98 %; and• Total N < 40 ppm, equivalent to a removal efficiency of around 77 %.Abbreviations: BOD7 means Biochemical Oxygen Demand measured during 7 days; COD means Chemical Oxygen Demand; SS means Suspended Solids, as captured on a filter with 0,45mm; SRT means Solids Residence Time.


2005 ◽  
Vol 51 (10) ◽  
pp. 311-316 ◽  
Author(s):  
J. Del Solar ◽  
S. Hudson ◽  
T. Stephenson

A sequencing batch reactor (SBR) treating the effluent of a motorway service station in the south of England situated on a major tourist route was investigated. Wastewater from the kitchens, toilets and washrooms facilities was collected from the areas on each side of the motorway for treatment on-site. The SBR was designed for a population equivalent (p.e.) of 500, assuming an average flow of 100 m3/d, influent biochemical oxygen demand (BOD) of 300 mg/l, and influent suspended solids (SS) of 300 mg/l. Influent monitoring over 8 weeks revealed that the average flow was only 65 m3/d and the average influent BOD and SS were 480 mg/l and 473 mg/l respectively. This corresponded to a high sludge loading rate (F:M) of 0.42 d−1 which accounted for poor performance. Therefore the cycle times were extended from 6 h to 7 h and effluent BOD improved from 79 to 27 mg/l.


2019 ◽  
Vol 1 (2) ◽  
pp. 1
Author(s):  
Lindawati Lindawati

Sebuah Sequencing Batch Reactor (SBR) digunakan untuk mengevaluasi peranan Biochemical Oxygen Demand (BOD) biosensor dalam proses optimasi proses pengolahan nutrien karbon, nitrogen dan fosfat. Hasil penelitian menunjukkan bahwa BOD biosensor dapat dipergunakan untuk penentuan karbon organik, sehingga reduksi siklus SBR dapat dilakukan dan efisiensi proses meningkat. Pola konsumsi karbon organik ditemukan dengan adanya ‘tanda diam’ pada fase anoksik/ anaerobik, di mana dari tanda ini, fase aerobik dapat segera dimulai. Reduksi durasi siklus SBR dari 8 jam menjadi 4 jam meningkatkan efiesiensi pengolahan C, N dan P yang meningkat pula (hampir dua kali lebih tinggi).


1999 ◽  
Vol 40 (3) ◽  
pp. 57-65 ◽  
Author(s):  
Martin M. Karpiscak ◽  
Robert J. Freitas ◽  
Charles P. Gerba ◽  
Luis R. Sanchez ◽  
Eylon Shamir

An integrated wastewater treatment facility, consisting of upper (solids separators, anaerobic lagoons, and aerobic ponds) and lower (wetland cells) subsystems, has been built to replace the lagoon at a dairy in Arizona, USA. The collection sump of the new waste treatment facility collects all dairy wastewater outflow. Wastewater is then pumped to solids separators, and flows by gravity to anaerobic ponds and aerobic ponds. The upper subsystem is expected to treat the water sufficiently so that the wetland cells may achieve further pollutant reductions. The lower subsystem, comprised of 8 surface wetland cells with an approximate surface area of 5,000 m2, receives outflow from the ponds. The cells are planted with cattail (Typha domingensis), soft-stem bulrush (Scirpus validus), and reed (Phragmites australis). After treatment is completed via the lagoons and ponds followed by the wetland cells, the wastewater can be reused to flush barns or to irrigate crops. Performance of the overall system is evaluated by measuring physical, chemical and biological parameters in water samples taken from selected locations along the treatment system. Chemical parameters studied include biochemical oxygen demand, pH, total suspended solids, nitrogen species. Biological monitoring included coliforms (total and fecal) and Listeria monocytogenes.


Sign in / Sign up

Export Citation Format

Share Document