scholarly journals Effect of different curing conditions on compressive strength and durability of kenaf fibre reinforced blended cementitious composites

2019 ◽  
Vol 277 ◽  
pp. 03012
Author(s):  
R. Ahmad ◽  
R. Hamid ◽  
S. A. Osman

This paper investigates the effect of normal curing (NC), air curing (AC), and burlap curing (BC) under different curing periods on the mechanical strength and durability of kenaf fibre reinforced blended cementitious composites (KFRBCC) with thermally activated alum sludge ash (AASA). The aim is to determine the most efficient condition and period for curing KFRBCC and to assess the effect of accelerated ageing on strength and durability of KFRBCC after wet/dry cycles. Meanwhile, the microstructure of these mixes is observed via scanning electron microscopy (SEM). The KFRBCC is designed to achieve strength beyond 50 MPa after 28 days (d) of curing by adding 2% treated kenaf fibre (KF) and by replacing Ordinary Portland Cement (OPC) with AASA. The findings suggest that compressive strength and durability of KFRBCC with 40% AASA cured under BC after age of 28 d are enhanced. The addition of treated KF with AASA have helped in limiting the reduction in the compressive strength and durability of the KFRBCC, particularly under prolonged curing period.

2013 ◽  
Vol 594-595 ◽  
pp. 521-526 ◽  
Author(s):  
Haider Mohammed Owaid ◽  
Roszilah Hamid ◽  
Mohd Raihan Taha

In this research the performance of ultrasonic pulse velocity in concrete is examined as a nondestructive experiment, in order to estimate compressive strength of thermally activated alum sludge multiple blended high performance concretes (HPC) that contain AAS, silica fume (SF), ground granulated blast furnace slag (GGBS) and palm oil fuel ash (POFA) are determined in both binary and ternary blends of cement. The water/binder ratio and total binder content are fixed at 0.30 and 493 kg/m3 for all types of mixes. The ultrasonic pulse velocity (UPV) of each concrete mix was measured using 100mm cubes after a curing period of ages of 3, 7, 28, 56 and 90 days. The results indicate a very positive exponential relationship between compressive strength and UPV for both binary and ternary blends of HPC mixtures, with coefficient correlation (R2) of 0.889.


2020 ◽  
Vol 20 (1) ◽  
pp. 319-325
Author(s):  
Min-Jae Kim ◽  
Hong-Joon Choi ◽  
Booki Chun ◽  
Wonsik Shin ◽  
Doo-Yeol Yoo

This study aims to enhance the energy absorption capacity of cementitious composites with 2 vol.% of polyethylene fibers, by adjusting mixing ingredients and curing conditions. Ground blast furnace slag, cement kiln dust, limestone powder, and silica fume were incorporated, and two different curing conditions were applied: 72 h of curing at 90 ℃ and 120 h of curing at 40 ℃. Compressive strength test and direct tensile test were performed on 6 mixtures and the test results were compared with those of ultra-high-performance concrete and engineered cementitious composite specimens. The maximum compressive strength of the 6 mixtures was measured to be approximately 117 MPa. The higher cement replacement ratio of the other components resulted in a decrease in the compressive strength of the specimens cured at 90 ℃. In the direct tensile test, the specimens cured at 40 ℃ exhibited lower tensile strength than those cured at 90 ℃, but the strain capacity was increased by approximately 305% and reached 7.7%. This also resulted in an enhancement of the energy absorption capacity from 80%–292% because of the differences in micro-cracking and fracturing behaviors, such as an increase inthe number of micro-cracks and decrease in crack width.


2021 ◽  
Vol 299 ◽  
pp. 124286
Author(s):  
Yue Liu ◽  
Yan Zhuge ◽  
Christopher W.K. Chow ◽  
Alexandra Keegan ◽  
Jun Ma ◽  
...  

2015 ◽  
Vol 754-755 ◽  
pp. 421-426 ◽  
Author(s):  
Haider Mohammed Owaid ◽  
Roszilah Hamid ◽  
Mohd Raihan Taha

This research presents the results of an investigation on the influence of thermally activated alum sludge ash (AASA) as a partial cement replacement on the near-surface characteristics of binary and ternary blended binder (TBB) concretes incorporating silica fume (SF), ground granulated blast furnace slag (GGBS), and palm oil fuel ash (POFA). All of the mixtures were prepared with a water/binder ratio and total binder content of 0.30 and 493 kg/m3, respectively. Initial surface absorption (ISAT) and sorptivity tests were conducted at the age of 28 days. Results indicate decrease in the ISAT and sorptivity values of binary blended binders with 15% AASA cement replacement compared with the control and 20% AASA concretes. A higher replacement level of 20% AASA did not help improve inner core durability but improved surface durability characteristics. All TBB concretes performed better than the binary blends with AASA at the same replacement levels.


Fibers ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Al-Ghazali Noor Abbas ◽  
Farah Nora Aznieta Abdul Aziz ◽  
Khalina Abdan ◽  
Noor Azline Mohd Nasir ◽  
Mohd Nurazzi Norizan

Increased environmental awareness and the demand for sustainable materials have promoted the use of more renewable and eco-friendly resources like natural fibre as reinforcement in the building industry. Among various types of natural fibres, kenaf has been widely planted in the past few years, however, it hasn’t been extensively used as a construction material. Kenaf bast fibre is a high tensile strength fibre, lightweight and cost-effective, offering a potential alternative for reinforcement in construction applications. To encourage its use, it’s essential to understand how kenaf fibre’s properties affect the performance of cement-based composites. Hence, the effects of KF on the properties of cementitious composites in the fresh and hardened states have been discussed. The current state-of-art of Kenaf Fibre Reinforced Cement Composite (KFRCC) and its different applications are presented for the reader to explore. This review confirmed the improvement of tensile and flexural strengths of cementitious composites with the inclusion of the appropriate content and length of kenaf fibres. However, more studies are necessary to understand the overall impact of kenaf fibres on the compressive strength and durability properties of cementitious composites.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 937
Author(s):  
Noorul Amin ◽  
Saeed Gul ◽  
Sabiha Sultana ◽  
Sultan Alam ◽  
Amir Naveed

The impact of different parameters on the compressive strength of geopolymer synthesized from clay and bagasse bottom ash is reported. Geopolymer was synthesized from thermally activated clay and bottom bagasse ash using sodium silicate and sodium hydroxide as activator. The maximum dissolution of alumina and silica from the bagasse ash and clay maintaining different alkali conditions is studied. The resulting geopolymer synthesized under different conditions is studied for compressive strength. Different characterizations of the resulting geopolymer were carried out using different analytical instruments. The results indicated that the dissolution and strength of geopolymer have close relationships with the alkali concentration, solution to solid ratio and curing period. The highest compressive strength of 25 MPa was observed for 8M NaOH, 24 MPa for 0.3 solution to solid ratio, 30 MPa for 60% clay and 30 MPa for 27 days of compressive strength.


Sign in / Sign up

Export Citation Format

Share Document