scholarly journals Finite element analysis of double resonance bender disk low frequency transducer

2019 ◽  
Vol 283 ◽  
pp. 05008
Author(s):  
Wei Lu ◽  
Yu Lan ◽  
Tianfang Zhou

A bender disk transducer can generate low-frequency sound in a small size and light weight. But traditional bender disk transducer only works at single frequency by using first order bending mode and emits moderate levels of power. In this work, a double resonance bander disk low frequency transducer is investigated by using finite element model. The double resonance bender disk transducer consists of two segmented 3-3 mode piezoelectric ceramic disk on the both side of hollow metal disc, which could generate larger displacement in order to increase power radiation. A simple elastic mass system placed inside the hollow metal disc is introduced in the system to produce other lower resonance modes. Through the FEM calculations, it is found that the transmitting voltage response (TVR) of bender disk transducer could enhance 4dB in the first order bending mode resonance frequency, which is compared with traditional bender disk transducer with the same size. The TVR of lower resonance mode which is produced by additional central simple support elastic mass system in segmented bender disk transducer is more than 130dB. Through the optimization of finite element simulation, a double resonance bender disk transducer is designed, and its resonance frequency is 600Hz and 1kHz, respectively. The value of TVR is 130dB and 134dB corresponding to two resonance frequency. The double resonance bender disk transducer is compact dimension, low weight and it is a high performance low frequency transducer.

Author(s):  
R. B. van Kempen ◽  
J. L. Herder ◽  
N. Tolou

Ortho-planar springs are characterized by their planar shape and the dominant out of plane motion. These springs have benefits for integration in piezoelectric energy harvesting transducers, because of their compactness and monolithic planar manufacturing. The operating behavior in the first low frequency bending mode can be optimized by obtaining an appropriate strain distribution. A holistic design approach is proposed that contains both the focus on strain distribution as on the low frequency dynamic operation challenge. Therefore a classification based on the strain distribution has been made, which is derived from the perspective of loading, clamping and geometry of single flexures of ortho-planar springs. A comparison based on the type of strain (bending/torsion ratio), strain inversion,off-axis stiffness and the natural frequency-normalized area factor (NFNA) has been performed. The double clamped folded configuration shows the most potential for future optimal low frequency transducer designs.


2020 ◽  
Vol 210 ◽  
pp. 05017
Author(s):  
Arkady Soloviev ◽  
Andrey Matrosov ◽  
Ivan Panfilov ◽  
Besarion Meskhi ◽  
Oleg Polushkin ◽  
...  

Mathematical and computer finite element model in the ACELAN package of resonant impact on a spike was developed and a full-scale experiment was carried out. Two installations are considered, one based on a cantilever, the free end of which acts on the spike, and the second is a semi-passive round bimorph. Excitation of vibrations is carried out using an actuator based on piezoceramic elements. In the first installation, low-frequency vibrations of the stem with a spike are excited and the resonance frequency is determined at which only an spike with grain performs intense vibrations. The second installation is designed to excite high-frequency vibrations at which resonant movements of the grains themselves arise. The purpose of both installations is to separate the grain from the spike using resonance phenomena.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1258
Author(s):  
Duo Teng ◽  
Xiaoyong Liu ◽  
Feng Gao

To meet the requirements of low frequency, high power, small size and light weight, a type of Class I barrel-stave flextensional transducer employing improved concave stave is presented. As the key component of flextensional transducer, concave stave plays an important role in vibrating efficiently to radiate acoustic energy. The structure of concave stave has a great effect on its behavior. In this paper, the main parameters of concave stave are discussed, especially the effect of radius on flextensional transducer. Both concave stave and transducer are analyzed through finite element method, including mechanical transformation behavior of concave stave and performances of flextensional transducer. On the basis of finite element design, five prototypes employing concave staves with different radii are manufactured and measured. The simulations and tests reveal that concave stave can affect performances of flextensional transducer. A larger radius of concave stave will result in a greater amplification of vibration and a lower resonance frequency of transducer. This can be a feasible way to optimize the resonance frequency or source level of flextensional transducer through adjusting the radius of concave stave in a small range. According to the electrical and acoustical tests, our Class I barrel-stave flextensional transducer is capable of being used as underwater low-frequency small-size projector.


Author(s):  
Yang Zhu ◽  
Oumar Barry ◽  
Weijiun Su ◽  
Jean Zu

Vibration-based energy harvesting using piezoelectric materials has gained considerable attention over the past decade. Currently, most piezoelectric energy harvesters (PEHs) are single resonance frequency based. The performance of a single-resonance PEH is often limited to only one resonance frequency. This paper discusses the possibility of improving the performance of a bimorph PEH by tuning the PEH using a spring-mass system attached to the bimorph’s free end. Through adding the spring-mass system, the PEH’s resonance frequency can be tuned to match the ambient vibration frequency, and its voltage/power-generating capability can be improved. An electromechanical model of the PEH is derived based on the Lagrange multiplier method. The model is then used in a harmonic base excitation case study, and the coupled electromechanical outputs are discussed. Simulation results show that the spring-mass attachment can create two resonant frequencies, making the PEH capable of working efficiently at two different frequencies in a low-frequency level. It is also shown that by properly selecting the spring stiffness and the mass, the voltage and power output of the PEH can be greatly increased as compared to a single bimorph without the spring-mass system.


1991 ◽  
Vol 3 (1) ◽  
pp. 235-253 ◽  
Author(s):  
L. D. Philipp ◽  
Q. H. Nguyen ◽  
D. D. Derkacht ◽  
D. J. Lynch ◽  
A. Mahmood

2012 ◽  
Vol 107 (4) ◽  
pp. 1241-1246 ◽  
Author(s):  
Gary Marsat ◽  
Leonard Maler

To interact with the environment efficiently, the nervous system must generate expectations about redundant sensory signals and detect unexpected ones. Neural circuits can, for example, compare a prediction of the sensory signal that was generated by the nervous system with the incoming sensory input, to generate a response selective to novel stimuli. In the first-order electrosensory neurons of a gymnotiform electric fish, a negative image of low-frequency redundant communication signals is subtracted from the neural response via feedback, allowing unpredictable signals to be extracted. Here we show that the cancelling feedback not only suppresses the predictable signal but also actively enhances the response to the unpredictable communication signal. A transient mismatch between the predictive feedback and incoming sensory input causes both to be positive: the soma is suddenly depolarized by the unpredictable input, whereas the neuron's apical dendrites remain depolarized by the lagging cancelling feedback. The apical dendrites allow the backpropagation of somatic spikes. We show that backpropagation is enhanced when the dendrites are depolarized, causing the unpredictable excitatory input to evoke spike bursts. As a consequence, the feedback driven by a predictable low-frequency signal not only suppresses the response to a redundant stimulus but also induces a bursting response triggered by unpredictable communication signals.


Sign in / Sign up

Export Citation Format

Share Document