scholarly journals Prediction of fire loading on the structures using computational fluid dynamics

2020 ◽  
Vol 313 ◽  
pp. 00033
Author(s):  
Romana Erdelyiová ◽  
Lucia Figuli ◽  
Matúš Ivančo

The development of a fire in a large-space fire section differs significantly from the development in a small fire section. In large-space objects, to design structures under the fire load often proceeds through a performance-based approach. Advanced methods can be used in all parts of the design in predicting of the scatter of temperature field, in calculating of the heat transfer to the structure and in assessing of the mechanical behaviour of the structure or its part under the fire load. The prediction of the gas temperature in the fire compartment is crucial for the structure design. The paper is focused on selection of different fire scenarios in the large-space building. The aim is to provide background for structural design in a fire using a performance-based design. The problem is solved by using FDS (Fire Dynamics Simulator) software based on the CFD (Computational Fluid Dynamics) method.

2004 ◽  
Vol 31 (6) ◽  
pp. 1061-1076 ◽  
Author(s):  
A M Horr ◽  
A Yibulayin ◽  
P Disney

Dynamic response of large complex space structures under wind loading is important in terms of performance and safety. Conventional method of wind loading calculation has been used successfully in codes to analyze large space structures. The method can be applied by approximating the air pressure, induced by wind, on the surfaces of structures. Although this replaces a wind loading test using complicated wind tunnel tests for any structural systems, the accuracy of the method, in the case of complex geometry guyed tower structures, is a matter of consideration. Hence, it is desirable to search for a procedure with more accuracy and reliability. In this respect, attention is paid to the advanced spectral element method and the computational fluid dynamics. Using the proposed formulation, a material and geometric nonlinear dynamic analyses have been performed to simulate post-buckling behaviours and also collapse modes for series of Manitoba Hydro's guyed towers under extreme wind loading conditions. Key words: computational fluid dynamics, wind loading, collapse mode, nonlinear analysis, post-buckling.


Author(s):  
L. Sun ◽  
K. Podila ◽  
Q. Chen ◽  
A. M. Bayomy ◽  
Y. F. Rao

Abstract The nuclear industry has seen an increased use of computational fluid dynamics (CFD) technology as a high-fidelity tool for design-basis and beyond-design-basis accident simulations. Among its applications, CFD modeling of fire and smoke propagation in confined zones (e.g., a main control room (MCR)) is a promising approach, since detailed experimental investigation under various accident scenarios would be difficult. Egress analysis considering human behaviors is of significant importance to an effective accident mitigation strategy, and high-fidelity analysis tools now encompass these parameters in the simulation and design of emergency evacuations. In this study, the fire and smoke propagation in a MCR is modeled using the large eddy simulations (LES) code fire dynamics simulator (FDS), along with an evacuation module, EVAC to simulate the emergency egress under an electrical cabinet fire scenario. The FDS results presented in this paper constitute the first step at Canadian Nuclear Laboratories (CNL) in advancing the CFD modeling of fire and evacuation for nuclear applications.


2017 ◽  
Vol 13 ◽  
pp. 121
Author(s):  
Stanislav Šulc ◽  
Vít Šmilauer ◽  
František Wald

Fire resistance of buildings is based on fire tests in furnaces with gas burners. However, the tests are very expensive and time consuming. This article presents a coupled simulation of an element loaded by a force and a fire loading. The simulation solves a weakly-coupled problem, consisting of fluid dynamics, heat transfer and mechanical model. The temperature field from the computational fluid dynamics simulation (CFD) creates Cauchy and radiative boundary conditions for the thermal model. Then, the temperature field from element is passed to the mechanical model, which induces thermal strain and modifies material parameters. The fluid dynamics is computed with Fire Dynamics Simulator and the thermo-mechanical task is solved in OOFEM. Both softwares are interconnected with MuPIF python library, which allows smooth data transfer across the different meshes, orchestrating simulations in particular codes, exporting results to the VTK formats and distributed computing.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
James A. Tallman

This paper presents an industrial perspective on the potential use of multiple-airfoil row unsteady computational fluid dynamics (CFD) calculations in high-pressure turbine design cycles. A sliding-mesh unsteady CFD simulation is performed for a high-pressure turbine section of a modern aviation engine at conditions representative of engine take-off. The turbine consists of two stages plus a center-frame strut upstream of the low-pressure turbine. The airfoil counts per row are such that a half-annulus model domain must be simulated for periodicity. The total model domain size is 170 MM computational grid points and the solution requires approximately nine days of clock time on 6288 processing cores of a Cray XE6 supercomputer. Airfoil and endwall cooling flows are modeled via source term additions to the flow. The endwall flowpath cavities and their purge/leakage flows are resolved in the computational meshes to an extent. The time-averaged temperature profile solution is compared with static rake data taken in engine tests. The unsteady solution shows a considerable improvement in agreement with the rake data, compared with a steady-state solution using circumferential mixing planes. Passage-to-passage variations in the gas temperature prediction are present in the 2nd stage, due to nonperiodic alignment between the nozzle vanes and rotor blades. These passage-to-passage differences are quantified and contrasted.


Author(s):  
Zhao Lei ◽  
Wang Ting

A pyroscrubber is a device used in the petroleum coke calcining industry to oxidize the carbonaceous contents, including hydrocarbon volatiles of the exhaust gas from the calcination kiln, so as to recover energy to produce electricity and leave no more than small traces of unburned volatiles, solid carbon, ash, or emission (e.g., CO, NOx, and SOx) in the flue gas discharged. Motivated by the need to maximize the energy recovery and reduce the pollutant emission from the pyroscrubber, a 3D computational model is developed to simulate the combustion and thermal-flow phenomena inside a pyroscrubber to guide an investigation of the means to reduce emissions and increase exergy output for downstream power generation. Computational fluid dynamics model validation is achieved by comparing the baseline case results with the plant measurement data of the temperature at three different locations, high bay, middle of the chamber, and exit, as well as NOx emissions at the exit. The simulation results show that the specially designed high-bay wall structure generates a strong mixing zone, forcing combustion to happen at an earlier stage and helping to efficiently utilize the main chamber space. A well-balanced amount of excess air is favorable in generating more energy output and lowering NOx emissions. Incomplete combustion with substoichiometric air cuts NOx emissions, but leads to less total energy output, lowers gas temperature, and increases CO emissions. A multistage burning strategy is introduced and studied and results show that it successfully cuts emission without compromising energy (electricity power) output.


2005 ◽  
Vol 128 (1) ◽  
pp. 45-53 ◽  
Author(s):  
K. Mahkamov

The use of computational fluid dynamics (CFD) models significantly extends the capabilities for the detailed analysis of the complex heat transfer and gas dynamic processes that occur in the internal gas circuit of a Stirling engine by more accurately predicting the engine’s performance. This accurate data on operational characteristics of the engine can then contribute to more precise calculations of the dimensions of a parabolic concentrator in a dish/Stirling engine installation. In this paper a successful axisymmetric CFD simulation of a solar “V”-type Stirling engine is described for the first time. The standard κ-ε turbulence model, with a moving mesh to reflect the reciprocating motion of the pistons, has been employed for the analysis of the engine’s working process. The gas temperature and pressure distributions and velocity fields in the internal gas circuit of the machine have been obtained and the pressure-volume diagrams have been calculated. Comparison of the numerical results produced from the axisymmetric CFD simulation of the engine’s working process with those computed with the use of second-order mathematical analysis shows that there are considerable differences. In particular, analysis of the data obtained indicates that the gas temperature in the compression space depends on the location in the cylinder for the given moment in the cycle and it may differ substantially from being harmonic in time.


Author(s):  
Y. F. Li ◽  
W. K. Chow

Fire-induced air flow in a large span building by computational fluid dynamics (CFD) will be discussed in this paper. The CFD model is based on Reynolds Averaging Navier-Stokes (RANS) equations with k-ε based turbulence model for predicting velocity, pressure and temperature distribution. This technique is commonly used in practical design for smoke management system. The fire is taken as a volumetric heat source and buoyancy effects are included in equations for the vertical momentum and turbulent parameters. Several key points to note in the simulation will be discussed. These are: • Relaxation factor and convergence criteria. • False diffusion. • Sudden changes in flow parameters across the heat source. A large terminal hall with 1 MW fire is taken as an example to discuss the above points. The fire scenarios in a region of interest will be assessed by CFD.


Sign in / Sign up

Export Citation Format

Share Document