scholarly journals Optimization of one-dimensional wire cutting with variable length based on genetic ant colony algorithm

2021 ◽  
Vol 336 ◽  
pp. 02011
Author(s):  
Xin Xia ◽  
Defu Wan

This paper presents an algorithm of one-dimensional wire cutting based on genetic algorithm and ant colony algorithm. Firstly, the dominant solution is screened out by genetic algorithm and transformed into the initial accumulation of pheromone in ant colony algorithm, and then the ant colony algorithm is used to adjust the dominant solution of genetic algorithm to obtain the approximate optimal solution. The experimental results show that the convergence rate of the fusion algorithm is faster than that of the ant colony algorithm, and the utilization rate of raw materials is higher than that of genetic algorithm. In addition, the optimal parameters are obtained by adjusting the experimental parameters of the fusion algorithm.

Author(s):  
Fei Tang

To improve the performance of bionic algorithms, an intelligent bionic optimization algorithm is proposed based on the morphological characteristics of trees growing toward light. The growth organ of the tree is mapped into the coding of the tree growth algorithm, and the entire tree is formed by selecting the fastest growing individual to form the next level of the tree. When the tree growth reaches a certain level, the individual code of the shoot tip is added to enhance the search ability of the individual shoot tip in the growth space of the entire tree. This method achieves a near-optimal solution. The experimental results were compared with the optimization results of the genetic algorithm and the ant colony algorithm using the classic optimization function. The experimental results show that this algorithm has fewer iterations, a faster convergence speed, higher precision, and a better optimization ability than the genetic algorithm or the ant colony algorithm.


2021 ◽  
Vol 11 (17) ◽  
pp. 7790
Author(s):  
Min Tang ◽  
Ying Liu ◽  
Fenglong Ding ◽  
Zhengguang Wang

In the production process for wooden furniture, the raw material costs account for more than 50% of furniture costs, and the utilization rate of raw materials depends mainly on the layout scheme. Therefore, a reasonable layout is an important measure to reduce furniture costs. This paper investigates the solid wood board cutting stock problem (CSP) and establishes an optimization model, with the goal of the highest possible utilization rate for original boards. An ant colony-immune genetic algorithm (AC-IGA) is designed to solve this model. The solutions of the ant colony algorithm are used as the initial population of the immune genetic algorithm, and the optimal solution is obtained using the immune genetic algorithm after multiple iterations are transformed into the accumulation of global pheromones, which improves the search ability and ensures the solution quality. The layout process of the solid wood board is abstracted into the construction process of the solution. At the same time, in order to prevent premature convergence, several improved methods, such as a global pheromone hybrid update and adaptive crossover probability, are proposed. Comparative experiments are designed to verify the feasibility and effectiveness of the AC-IGA, and the experimental results show that the AC-IGA has better solution precision and global search ability compared with the ant colony algorithm (ACA), genetic algorithm (GA), grey wolf optimizer (GWO), and polar bear optimization (PBO). The utilization rate increased by more than 2.308%, which provides effective theoretical and methodological support for furniture enterprises to improve economic benefits.


Author(s):  
Fei Tang

To improve the optimization efficiency of the intelligent bionic optimization algorithm, this paper proposes intelligent bionic optimization algorithm based on the growth characteristics of tree branches. Firstly, the growth organ of the tree is mapped into the coding of the tree growth algorithm (intelligent bionic optimization algorithm). Secondly, the entire tree, that is the growing tree, is formed by selecting the individual that grows fast to generate the next level of shoot population. Lastly, if the growing tree reaches a certain level, the individual coding of the shoots is added to enhance the searching ability of the individuals of current generation in the growth tree growth space, so that the algorithm approaches the optimal solution. The experimental results were compared with the optimization results of the genetic algorithm and the ant colony algorithm using the classic optimization function and showed that this algorithm has fewer iterations, a faster convergence speed, higher precision, and a better optimization ability than the genetic algorithm and the ant colony algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Weichuan Ni ◽  
Zhiming Xu ◽  
Jiajun Zou ◽  
Zhiping Wan ◽  
Xiaolei Zhao

The traditional IPv6 routing algorithm has problems such as network congestion, excessive energy consumption of nodes, and shortening the life cycle of the network. In response to this phenomenon, we proposed a routing optimization algorithm based on genetic ant colony in IPv6 environment. The algorithm analyzes and studies the genetic algorithm and the ant colony algorithm systematically. We use neural network to build the initial model and combine the constraints of QoS routing. We effectively integrate the genetic algorithm and ant colony algorithm that maximize their respective advantages and apply them to the IPv6 network. At the same time, in order to avoid the accumulation of a lot of pheromones by the ant colony algorithm in the later stage of the network, we have introduced an anticongestion reward and punishment mechanism. By comparing the search path with the optimal path, rewards and punishments are based on whether the network path is smooth or not. Finally, it is judged whether the result meets the condition, and the optimal solution obtained is passed to the BP neural network for training; otherwise, iterative iterations are required until the optimal solution is satisfied. The experimental results show that the algorithm can effectively adapt to the IPv6 routing requirements and can effectively solve the user’s needs for network service quality, network performance, and other aspects.


2010 ◽  
Vol 26-28 ◽  
pp. 620-624 ◽  
Author(s):  
Zhan Wei Du ◽  
Yong Jian Yang ◽  
Yong Xiong Sun ◽  
Chi Jun Zhang ◽  
Tuan Liang Li

This paper presents a modified Ant Colony Algorithm(ACA) called route-update ant colony algorithm(RUACA). The research attention is focused on improving the computational efficiency in the TSP problem. A new impact factor is introduced and proved to be effective for reducing the convergence time in the RUACA performance. In order to assess the RUACA performance, a simply supported data set of cities, which was taken as the source data in previous research using traditional ACA and genetic algorithm(GA), is chosen as a benchmark case study. Comparing with the ACA and GA results, it is shown that the presented RUACA has successfully solved the TSP problem. The results of the proposed algorithm are found to be satisfactory.


2021 ◽  
pp. 1-12
Author(s):  
Fei Long

The difficulty of English text recognition lies in fuzzy image text classification and part-of-speech classification. Traditional models have a high error rate in English text recognition. In order to improve the effect of English text recognition, guided by machine learning ideas, this paper combines ant colony algorithm and genetic algorithm to construct an English text recognition model based on machine learning. Moreover, based on the characteristics of ant colony intelligent algorithm optimization, a method of using ant colony algorithm to solve the central node is proposed. In addition, this paper uses the ant colony algorithm to obtain the characteristic points in the study area and determine a reasonable number, and then combine the uniform grid to select some non-characteristic points as the central node of the core function, and finally use the central node with a reasonable distribution for modeling. Finally, this paper designs experiments to verify the performance of the model constructed in this paper and combines mathematical statistics to visually display the experimental results using tables and graphs. The research results show that the performance of the model constructed in this paper is good.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Peng Li ◽  
Hua Zhu

The optimal performance of the ant colony algorithm (ACA) mainly depends on suitable parameters; therefore, parameter selection for ACA is important. We propose a parameter selection method for ACA based on the bacterial foraging algorithm (BFA), considering the effects of coupling between different parameters. Firstly, parameters for ACA are mapped into a multidimensional space, using a chemotactic operator to ensure that each parameter group approaches the optimal value, speeding up the convergence for each parameter set. Secondly, the operation speed for optimizing the entire parameter set is accelerated using a reproduction operator. Finally, the elimination-dispersal operator is used to strengthen the global optimization of the parameters, which avoids falling into a local optimal solution. In order to validate the effectiveness of this method, the results were compared with those using a genetic algorithm (GA) and a particle swarm optimization (PSO), and simulations were conducted using different grid maps for robot path planning. The results indicated that parameter selection for ACA based on BFA was the superior method, able to determine the best parameter combination rapidly, accurately, and effectively.


Sign in / Sign up

Export Citation Format

Share Document