scholarly journals A Review of Computer Vision Techniques in the Detection of Metal Failures

2021 ◽  
Vol 349 ◽  
pp. 02021
Author(s):  
Deborah Fitzgerald ◽  
Roselita Fragoudakis

This paper considers and contrasts several computer vision techniques used to detect defects in metallic components during manufacturing or in service. Methodologies include statistical analysis, weighted entropy modification, Fourier transformations, neural networks, and deep learning. Such systems are used by manufacturers to perform non-destructive testing and inspection of components at high speeds [1]; providing better error detection than traditional human visual inspection, and lower costs [2]. This is a review of the computer vision system comparing different mathematical analysis in order to illustrate the strengths and weaknesses relative to the nature of the defect. It includes exemplar that histograms and statistical analysis operate best with significant contrast between the defect and background, that co-occurrence matrix and Gabor filtering are computationally expensive, that structural analysis is useful when there are repeated patterns, that Fourier transforms, applied to spatial data, need windowing to capture localized issues, and that neural networks can be utilized after training.

2018 ◽  
Vol 3 (4) ◽  
pp. 4-15
Author(s):  
Igor B. Tomasevic

Meat and meat products color evaluation ability of a computer vision system (CVS) is investigated by a comparison study with color measurements from a traditional colorimeter. A statistical analysis revealed significant differences between the instrumental values in all three dimensions (L*, a*, b*) between the CVS and colorimeter. The CVS-generated colors were more similar to the sample of the meat products visualized on the monitor, compared to colorimeter-generated colors in all (100 %) individual trials performed. The use of CVS should be considered a superior alternative to the traditional method for measuring color of meat and meat products.


2014 ◽  
Vol 159 ◽  
pp. 143-150 ◽  
Author(s):  
Sahameh Shafiee ◽  
Saeid Minaei ◽  
Nasrollah Moghaddam-Charkari ◽  
Mohsen Barzegar

2007 ◽  
Vol 78 (3) ◽  
pp. 897-904 ◽  
Author(s):  
Kıvanç Kılıç ◽  
İsmail Hakki Boyacı ◽  
Hamit Köksel ◽  
İsmail Küsmenoğlu

Author(s):  
I. G. Zubov

Introduction. Computer vision systems are finding widespread application in various life domains. Monocularcamera based systems can be used to solve a wide range of problems. The availability of digital cameras and large sets of annotated data, as well as the power of modern computing technologies, render monocular image analysis a dynamically developing direction in the field of machine vision. In order for any computer vision system to describe objects and predict their actions in the physical space of a scene, the image under analysis should be interpreted from the standpoint of the basic 3D scene. This can be achieved by analysing a rigid object as a set of mutually arranged parts, which represents a powerful framework for reasoning about physical interaction.Objective. Development of an automatic method for detecting interest points of an object in an image.Materials and methods. An automatic method for identifying interest points of vehicles, such as license plates, in an image is proposed. This method allows localization of interest points by analysing the inner layers of convolutional neural networks trained for the classification of images and detection of objects in an image. The proposed method allows identification of interest points without incurring additional costs of data annotation and training.Results. The conducted experiments confirmed the correctness of the proposed method in identifying interest points. Thus, the accuracy of identifying a point on a license plate achieved 97%.Conclusion. A new method for detecting interest points of an object by analysing the inner layers of convolutional neural networks is proposed. This method provides an accuracy similar to or exceeding that of other modern methods.


2021 ◽  
pp. PP. 18-50
Author(s):  
Ahmed A. Elngar ◽  
◽  
◽  
◽  
◽  
...  

Computer vision is one of the fields of computer science that is one of the most powerful and persuasive types of artificial intelligence. It is similar to the human vision system, as it enables computers to recognize and process objects in pictures and videos in the same way as humans do. Computer vision technology has rapidly evolved in many fields and contributed to solving many problems, as computer vision contributed to self-driving cars, and cars were able to understand their surroundings. The cameras record video from different angles around the car, then a computer vision system gets images from the video, and then processes the images in real-time to find roadside ends, detect other cars, and read traffic lights, pedestrians, and objects. Computer vision also contributed to facial recognition; this technology enables computers to match images of people’s faces to their identities. which these algorithms detect facial features in images and then compare them with databases. Computer vision also play important role in Healthcare, in which algorithms can help automate tasks such as detecting Breast cancer, finding symptoms in x-ray, cancerous moles in skin images, and MRI scans. Computer vision also contributed to many fields such as image classification, object discovery, motion recognition, subject tracking, and medicine. The rapid development of artificial intelligence is making machine learning more important in his field of research. Use algorithms to find out every bit of data and predict the outcome. This has become an important key to unlocking the door to AI. If we had looked to deep learning concept, we find deep learning is a subset of machine learning, algorithms inspired by structure and function of the human brain called artificial neural networks, learn from large amounts of data. Deep learning algorithm perform a task repeatedly, each time tweak it a little to improve the outcome. So, the development of computer vision was due to deep learning. Now we'll take a tour around the convolution neural networks, let us say that convolutional neural networks are one of the most powerful supervised deep learning models (abbreviated as CNN or ConvNet). This name ;convolutional ; is a token from a mathematical linear operation between matrixes called convolution. CNN structure can be used in a variety of real-world problems including, computer vision, image recognition, natural language processing (NLP), anomaly detection, video analysis, drug discovery, recommender systems, health risk assessment, and time-series forecasting. If we look at convolutional neural networks, we see that CNN are similar to normal neural networks, the only difference between CNN and ANN is that CNNs are used in the field of pattern recognition within images mainly. This allows us to encode the features of an image into the structure, making the network more suitable for image-focused tasks, with reducing the parameters required to set-up the model. One of the advantages of CNN that it has an excellent performance in machine learning problems. So, we will use CNN as a classifier for image classification. So, the objective of this paper is that we will talk in detail about image classification in the following sections.


Author(s):  
Ruchir Shah ◽  
Dhaval Tamboli ◽  
Ajay Makwana ◽  
Ravindra Baria ◽  
Kishori Shekokar ◽  
...  

In this survey paper, we have discussed a proposed system that can be a visionary eye for a blind person. A common goal in computer vision research is to build machines that can replicate the human vision system. For example, to recognize and describe objects/scenes. People who are blind to overcome their real daily visual challenges. To develop a machine that can work by the vocal and graphical assistive answer. A machine can work on voice assistant and take the image taken by a person and after an image processing and extract the result after neural networks.


Sign in / Sign up

Export Citation Format

Share Document