scholarly journals Design of elastic and dissipation joints in bearing structures of electronic packages

2021 ◽  
Vol 351 ◽  
pp. 01012
Author(s):  
Igor Kovtun ◽  
Juliy Boiko ◽  
Svitlana Petrashchuk ◽  
Michał Liss

Mathematical modeling and experimental research represented in this paper is aimed at dynamic force analysis of circuit cards in order to eliminate or reduce dynamic stress and deflection to an acceptable level and to provide strength and reliability in design of circuit card assemblies subjected to vibration. In conditions when viscous friction forces are negligible and viscous friction dampers, such as liquid dampers, cannot be used reduction of oscillation amplitude in critical frequencies was proposed by creating dry friction damper. On the base of mathematical model, the method for reducing dynamic stress and deflection in critical section of circuit cards in resonance conditions has been developed by inserting additional elastic and dissipation joint introduced by dry friction damper. The dry friction damper device is introduced in three variants of design. The effectiveness of dry friction damper is characterized by its elastic and damping characteristics and especially by the stiffness.

Author(s):  
Wayne E. Whiteman ◽  
Aldo A. Ferri

Abstract A multi-mode analysis of a beam-like structure undergoing transverse vibration and subjected to a displacement-dependent friction force is conducted. The level of displacement-dependence is governed by a ramp angle and spring arrangement as discussed in Part I. The system is studied by using harmonic balance as an approximate analytical solution and then by using a time integration method. The damping characteristics of the system are studied in detail. The results qualitatively agree with those obtained using a single-degree-of-freedom analysis of this system reported in Part I. Interesting findings include the appearance of internal resonance peaks when multiple modes are considered. Also, as with the earlier single-degree-of-freedom study, two dynamic response solutions exist at certain parameter values. It is found that the ability to control the amplitude of the response is a function of the frequency range considered. In general, near modal resonance peaks, the amplitude of the response decreases with increasing ramp angle. However, in an “overlapping” region between resonance peaks, the amplitude of the response actually increases with increasing ramp angle. Detailed analysis of the damping characteristics indicate that the dry friction damper is most effective in damping the fundamental mode. The other critical observation is that the damping contribution from the displacement-dependent dry friction damper is “viscous-like” in nature and relatively insensitive to the amplitude of the response. This result suggests that in the case of turbine or compressor blades, this type of damping arrangement may be effective in the suppression of flutter.


Author(s):  
Wayne E. Whiteman ◽  
Aldo A. Ferri

Abstract The dynamic behavior of a beam-like structure undergoing transverse vibration and subjected to a displacement-dependent dry friction force is examined. In Part I, the beam is modeled by a single mode while Part II considers multi-mode representations. The displacement dependence in each case is caused by a ramp configuration that allows the normal force across the sliding interface to increase linearly with slip displacement. The system is studied first by using first-order harmonic balance and then by using a time integration method. The stick-slip behavior of the system is also studied. Even though the only source of damping is dry friction, the system is seen to exhibit “viscous-like” damping characteristics. A strong dependence of the equivalent natural frequency and damping ratio on the displacement amplitude is an interesting result. It is shown that for a given set of parameter values, an optimal ramp angle exists that maximizes the equivalent damping ratio. The appearance of two dynamic response solutions at certain system and forcing parameter values is also seen. Results suggest that the overall characteristics of mechanical systems may be improved by properly configuring frictional interfaces to allow normal forces to vary with displacement.


2018 ◽  
Vol 224 ◽  
pp. 02043
Author(s):  
Aleksandr Kiryukhin

The use of radial bearings with segments on a self-generated hydrostatic suspension has been substantiated in order to satisfy the requirements for precision positioning of axes and efficiency of stabilization of shaft oscillations of power-consuming rotary machines. The methods of turbomachine dynamical analysis based on the modelling of the viscous friction forces process and inertia in lubricating films that balance the harmonic loads on the shaft by redistributing the lubricant flow parameters in the bearing gaps with integrated liquid dampers have been further developed. The complex approach for improving functional properties of turbomachine supporting block on the basis of multicriteria optimization of hydraulic tracts parameters and lubrication system operating modes is presented.


Author(s):  
Chaofeng Li ◽  
Zengchuang Shen ◽  
Zilin Chen ◽  
Houxin She

The vibration dissipation mechanism of the rotating blade with a dovetail joint is studied in this paper. Dry friction damping plays an indispensable role in the direction of vibration reduction. The vibration level is reduced by consuming the total energy of the turbine blade with the dry friction device on the blade-root in the paper. The mechanism of the vibration reduction is revealed by the variation of the friction force and the energy dissipation ratio of dry friction. In this paper, the flexible blade with a dovetail interface feature is discretized by using the spatial beam element based on the finite element theory. Then the classical Coulomb-spring friction model is introduced to obtain the dry friction model on the contact interfaces of the tenon-mortise structure. What is more, the effects of the system parameters (such as the rotating speed, the friction coefficient, the installation angle of the tenon) and the excitation level on blade damping characteristics are discussed, respectively. The results show that the variation of the system parameters leads to a significant change of damping characteristics of the blade. The variation of the tangential stiffness and the position of the external excitation will affect the nonlinear characteristics and vibration damping characteristics.


Author(s):  
Walter Sextro ◽  
Karl Popp ◽  
Ivo Wolter

Friction dampers are installed underneath the blade platforms to improve the reliability. Because of centrifugal forces the dampers are pressed onto the platforms. Due to dry friction and the relative motion between blades and dampers, energy is dissipated, which results in a reduction of blade vibration amplitudes. The geometry of the contact is in many cases like a Hertzian line contact. A three-dimensional motion of the blades results in a two-dimensional motion of one contact line of the friction dampers in the contact plane. An experiment with one friction damper between two blades is used to verify the two-dimensional contact model including microslip. By optimizing the friction dampers masses, the best damping effects are obtained. Finally, different methods are shown to calculate the envelope of a three-dimensional response of a detuned bladed disk assembly (V84.3-4th-stage turbine blade) with friction dampers.


Author(s):  
Liu Hongzhao ◽  
E. Appleton

Abstract A thorough analysis on the characteristics of a grout delivery mechanism in the lining of shafts has been accomplished. The dynamic equation of this spraying mechanism has been established and can describe the system’s performance properties under different conditions of viscous friction forces. The analysis introduces a combined viscous damping coefficient c* and a ratio λ between viscous friction force and inertia force. It is proved theoretically that the relative velocity of the grout is less than the implicate velocity and the emission angle α described in the paper is always larger than 45 °. Numerical simulations are performed by feeding various different parameters into the model. A full discussion of the effects of different variables is presented. Additionally, a formula for calculating the driving torque and power is developed. These studies provide an understanding of the properties of this mechanism and should prove useful in guiding its design and operation.


Author(s):  
Chao Li ◽  
Binglong Lei ◽  
Yanhong Ma ◽  
Jie Hong

Abstract Typical turbofan engine-support-structure systems having a high thrust-to-weight ratio are light, and the structure primarily comprises a plate and shells. The local vibration response of the support structure is excessively large when different frequency loads are applied. A structural vibration response control method based on dry friction damping is proposed to control the excessive vibration response. A dry friction damper with dynamic suction was designed to enhance the damping characteristics of the rotor supporting structure system in the wide frequency domain, without sacrificing the dynamic stiffness of the structure. The system is designed to effectively control the vibration response of the supporting structure at the working-speed frequency. Through theoretical modeling and simulation analyses, the influence of friction contact and damper structure characteristics on the damping effect is described quantitatively. Furthermore, the design idea and the damping process of the supporting structure are described. The calculation results show that the contact friction of the dry friction damper can consume the vibration energy of the supporting frame. A reasonable design of the contact characteristics and geometric configuration parameters of the damper can further optimize the vibration-reduction effect, and thereby improve the vibration response control design of the supporting structure system of aeroengines.


Author(s):  
Yaguang Wu ◽  
Yu Fan ◽  
Lin Li ◽  
Zhimei Zhao

Abstract This paper proposes a flexible dry friction plate to mitigate the vibration of thin-walled structures for one resonance crossing. Based on a cantilever beam-friction damper finite element model, the geometry and material parameters of the friction plate are optimized numerically through steady-state response analyses by the widely-used Multi-Harmonic Balance Method (MHBM). In order to further improve the damping effect, piezoelectric material is distributed to the flexible damper, and two types of dry friction and piezoelectric hybrid dampers are explored, namely semi-active and passive, respectively. For semi-active hybrid dampers, piezoelectric material is used as an actuator to adjust the normal load applied to the friction interface in real time, so that the friction damping is improved. For passive ones, piezoelectric material is used as a transducer, which dissipates the strain energy stored in the wavy plate by the shunting circuit, additional shunted piezoelectric damping contributes to the total output damping accordingly. Better damping effect compared with the friction baseline is realized for the two types ideally. This damping module has a simple structure and avoids the problem of installation and maintenance of piezoelectric material which is generally bonded to the host structure. Technical challenges are: the semi-active type requires excessive voltage applied to the piezoelectric actuator, while the passive one needs to connect a programmable synthetic circuit.


Sign in / Sign up

Export Citation Format

Share Document