Analysis of the off-corner subsurface cracks of continuous casting blooms under the influence of soft reduction and controllable approaches by a chamfer technology

2019 ◽  
Vol 116 (3) ◽  
pp. 310 ◽  
Author(s):  
Nanfu Zong ◽  
Hui Zhang ◽  
Yang Liu ◽  
Zhifang Lu

In the current study, the morphology of the off-corner subsurface cracks located on the cross section of continuous casting bloom under a soft reduction operation was observed. A 3D thermo-mechanical model was adopted to calculate the temperature history, bulging deformation and stress distributions in the reduction region, and then to analyze the formation of the off-corner subsurface cracks under the influence of soft reduction. The results showed that the off-corner subsurface cracks can be formed under the influence of the extensive stress fields which develop in the cracking temperature range, especially located on the loosed side of the bloom corner region. Adjusting the chamfer angle and chamfer length can decrease stress concentration and bulging deformation to minimize the risk of off-corner subsurface cracks during the soft reduction operation.

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2280
Author(s):  
Xinghua Chen ◽  
Wei Deng ◽  
Shuai Niu

Industrial experiments of mechanical soft reduction in continuous casting were conducted in the present study aiming to improve the internal quality of the bearing steel blooms. Two methods were developed to verify the solidification model for a reliable crater end in the caster, which is provided by SMS CONCAST. The verified solidification model was applied to determine the solidification status of the bloom and provides theoretical reduction region. Several trials were conducted to study the optimization of the reduction rate regarding the V-shaped and centerline segregation of the bloom. The results show an obvious improvement of internal quality in the bearing steel bloom by applying appropriate reduction during casting.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4023
Author(s):  
Leonardo M. Honório ◽  
Milena F. Pinto ◽  
Maicon J. Hillesheim ◽  
Francisco C. de Araújo ◽  
Alexandre B. Santos ◽  
...  

This research employs displacement fields photogrammetrically captured on the surface of a solid or structure to estimate real-time stress distributions it undergoes during a given loading period. The displacement fields are determined based on a series of images taken from the solid surface while it experiences deformation. Image displacements are used to estimate the deformations in the plane of the beam surface, and Poisson’s Method is subsequently applied to reconstruct these surfaces, at a given time, by extracting triangular meshes from the corresponding points clouds. With the aid of the measured displacement fields, the Boundary Element Method (BEM) is considered to evaluate stress values throughout the solid. Herein, the unknown boundary forces must be additionally calculated. As the photogrammetrically reconstructed deformed surfaces may be defined by several million points, the boundary displacement values of boundary-element models having a convenient number of nodes are determined based on an optimized displacement surface that best fits the real measured data. The results showed the effectiveness and potential application of the proposed methodology in several tasks to determine real-time stress distributions in structures.


2015 ◽  
Vol 1088 ◽  
pp. 153-158 ◽  
Author(s):  
An Gui Hou ◽  
Yi Min ◽  
Cheng Jun Liu ◽  
Mao Fa Jiang

A heat transfer and solidification model of slab continuous casting process was developed, and the nail-shooting experiments were carried out to verify and improve the prediction accuracy. The comparison between the simulation and the measurements results showed that, there exists difference between the model predicted liquid core length and the calculated liquid core length according to the measurement results of the solidification shell thickness. In the present study, the value of constant a in the heat transfer coefficient calculation formula was corrected through back-calculation, results showed that, the suitable value of a is 31.650, 33.468 and 35.126 when the casting speed is 0.8m·min-1, 0.9m·min-1 and 1.0m·min-1 respectively, which can meet the liquid core length of the measurement results. The developed model built a foundation for the application of dynamic secondary cooling, and dynamic soft reduction.


2015 ◽  
Vol 15 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Matthias Ratajczak ◽  
Thomas Wondrak ◽  
Klaus Timmel ◽  
Frank Stefani ◽  
Sven Eckert

AbstractIn continuous casting DC magnetic fields perpendicular to the wide faces of the mold are used to control the flow in the mold. Especially in this case, even a rough knowledge of the flow structure in the mold would be highly desirable. The contactless inductive flow tomography (CIFT) allows to reconstruct the dominating two-dimensional flow structure in a slab casting mold by applying one external magnetic field and by measuring the flow-induced magnetic fields outside the mold. For a physical model of a mold with a cross section of 140 mm×35 mm we present preliminary measurements of the flow field in the mold in the presence of a magnetic brake. In addition, we show first reconstructions of the flow field in a mold with the cross section of 400 mm×100 mm demonstrating the upward scalability of CIFT.


2008 ◽  
Vol 575-578 ◽  
pp. 80-86 ◽  
Author(s):  
J. Luo ◽  
Xin Lin ◽  
Yan Hong Ye ◽  
K.W. Liu

A two dimensions (2D) multiphase solidification model is used to study the liquid core solidification in the influence of deformation during soft reduction of continuous casting (CC). The transient transport equations (mass, momentum and enthalpy) for each phase of a thin steel slab CC are solved. Four different cases including of density-temperature function and deformation reduction factor on this CC are simulated. The solidification ending point position of liquid core, temperature, velocity and fracture of liquid and solid phases are compared. Understandings to the deformation and liquid core formation mechanism on soft reduction solidification process of CC are improved.


2010 ◽  
Vol 156-157 ◽  
pp. 1415-1420
Author(s):  
Zhong Zheng ◽  
Hai Ou Zhang ◽  
Gui Lan Wang

In this article, a drawing die is researched in order to obtain the dynamic load and stress distributions and determine the potential fatigue location in it. The stress fields of the drawing die in the drawing process and their changing rules were studied through finite element method. The dynamic simulation of stress changing state has been realized, and the potential fatigue locations in the die were also determined. Based on the conclusion, the cavity die was divided into the substrate part and the wear-resistant part according to the stress distribution. Fatigue life estimations were made on the homogeneous die and the die with bi-materials. The example showed that bi-materials design can increase the service life while greatly reduces the cost of die material. The conclusions drawn conform to reality and have realistic significance.


2004 ◽  
Vol 34 (4) ◽  
pp. 817-828 ◽  
Author(s):  
Albert Saravi ◽  
C Kevin Lyons

In this study a finite element model of a back spar system was developed with three guylines opposing the skyline strap tension. In this paper the allowable skyline strap tension is the tension in the skyline strap that results in the maximum normal stress on a transverse cross section of the tree being equal to an assumed allowable stress. An iterative routine was developed to find the allowable skyline strap tension, and this routine was found to converge rapidly from initial values that were below and above the allowable skyline strap tension. Two algorithms were developed for finding the maximum normal stress on a transverse cross section of a tree, method 1 and method 2. If the plane that the tree displaced in was known a priori, then method 2 could be used, and it was found to be less sensitive to mesh coarseness. If the plane that the tree displaced in was not known a priori, then method 1 had to be used with a less coarse mesh. It was found that the stress concentrations due to simplified cable connections were not significant for rigging configurations that allowed a larger rigging point displacement. The rigging configurations that allowed larger rigging point displacements have stress fields that are dominated by bending, while for rigging configurations that allow only small rigging point displacements, the stress fields are dominated by axial compression.


Sign in / Sign up

Export Citation Format

Share Document