scholarly journals Photogrammetric Process to Monitor Stress Fields Inside Structural Systems

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4023
Author(s):  
Leonardo M. Honório ◽  
Milena F. Pinto ◽  
Maicon J. Hillesheim ◽  
Francisco C. de Araújo ◽  
Alexandre B. Santos ◽  
...  

This research employs displacement fields photogrammetrically captured on the surface of a solid or structure to estimate real-time stress distributions it undergoes during a given loading period. The displacement fields are determined based on a series of images taken from the solid surface while it experiences deformation. Image displacements are used to estimate the deformations in the plane of the beam surface, and Poisson’s Method is subsequently applied to reconstruct these surfaces, at a given time, by extracting triangular meshes from the corresponding points clouds. With the aid of the measured displacement fields, the Boundary Element Method (BEM) is considered to evaluate stress values throughout the solid. Herein, the unknown boundary forces must be additionally calculated. As the photogrammetrically reconstructed deformed surfaces may be defined by several million points, the boundary displacement values of boundary-element models having a convenient number of nodes are determined based on an optimized displacement surface that best fits the real measured data. The results showed the effectiveness and potential application of the proposed methodology in several tasks to determine real-time stress distributions in structures.

2010 ◽  
Vol 97-101 ◽  
pp. 1223-1226
Author(s):  
Jun Lin Li ◽  
Shao Qin Zhang

The problem of orthotropic composite materials semi-infinite interfacial crack was studied, by constructing new stress functions and employing the method of composite material complex. In the case that the secular equations’ discriminates the and theoretical solutions to the stress fields and the displacement fields near semi-infinite interface crack tip without oscillation and inter-embedding between the interfaces of the crack are obtained, a comparison with finite element example was done to verify the correction of theoretical solution.


2015 ◽  
Vol 32 (11) ◽  
pp. 1369-1377 ◽  
Author(s):  
Kan Hong ◽  
Sheng Hong

2010 ◽  
Vol 156-157 ◽  
pp. 1415-1420
Author(s):  
Zhong Zheng ◽  
Hai Ou Zhang ◽  
Gui Lan Wang

In this article, a drawing die is researched in order to obtain the dynamic load and stress distributions and determine the potential fatigue location in it. The stress fields of the drawing die in the drawing process and their changing rules were studied through finite element method. The dynamic simulation of stress changing state has been realized, and the potential fatigue locations in the die were also determined. Based on the conclusion, the cavity die was divided into the substrate part and the wear-resistant part according to the stress distribution. Fatigue life estimations were made on the homogeneous die and the die with bi-materials. The example showed that bi-materials design can increase the service life while greatly reduces the cost of die material. The conclusions drawn conform to reality and have realistic significance.


Author(s):  
J. Li ◽  
C. L. Tan ◽  
X. Wang

This paper presents T-stress solutions for an internal edge crack in thick-walled cylinders under complex stress distributions. First, the background of the weight function method for the calculation of T-stress is discussed. Then the T-stress results for edge-cracked cylinders obtained from extensive boundary element analyses are summarized. The crack geometries analyzed cover a wide range of radius ratios and relative crack lengths. The loading cases considered in the BEM analysis for the cracked cylinder are: i) crack face pressures with polynomial stress distributions acting on the crack face and ii) internal pressure or steady state thermal loading in the cylinder. Then, the T-stress results for uniform and linearly varying crack face pressure cases are used as the reference solutions to derive weight functions for T-stress. Boundary element results of T-stress for other nonlinear stress distributions are used to validate the derived T-stress weight functions. Excellent accuracy has been achieved. The weight functions derived are suitable for obtaining T-stress solutions for thick-walled cylinders with an internal edge crack under any complex stress fields.


Author(s):  
Holger Graf ◽  
Andre´ Stork

This paper presents a new method for the manipulation of a given CAE domain in view of VR based explorations that enables engineers to interactively inspect and analyze a linear static domain. The interactions can ideally be performed in real-time in order to provide an intuitive impression of the changes to the underlying volumetric domain. We take the approach of element masking, i.e. the blending out of computations resulting from computational overhead for inner nodes, based on the inversion of the stiffness matrix. This allows us to optimize the re-simulation loop and to achieve real-time performance for strain and stress distributions with immediate visualization feedback caused by interactively changing boundary conditions. The novelty of the presented approach is a direct coupling of view dependent simulations and its close linkage to post-processing tasks. This allows engineers to also inspect the changes of the stress field inside of the volume during, e.g. cross sectioning.


Sign in / Sign up

Export Citation Format

Share Document